Chlorinated Paraffins Leaking from Hand Blenders can lead to Significant Human Exposures.

Yuan, B.; Strid, A.; Darnerud, P.O.; de Wit, C.A.; Nyström, J.; Bergman, Å.
2017 | Environ Int | 109 (73-80)

Measurement of micronuclei and internal dose in mice demonstrates that 3-monochloropropane-1,2-diol (3-MCPD) has no genotoxic potency in vivo

J. Aasa; M. Törnqvist; L. Abramsson-Zetterberg
2017 | Food Chem. Toxicol. | 109 (414-420)

In this study 3-monochloropropane-1,2-diol (3-MCPD), a compound that appears as contaminant in refined cooking oils, has been studied with regard to genotoxicity in vivo (mice) with simultaneous measurement of internal dose using state-of-the-art methodologies. Genotoxicity (chromosomal aberrations) was measured by flow cytometry with dual lasers as the frequency of micronuclei in erythrocytes in peripheral blood from BalbC mice intraperitoneally exposed to 3-MCPD (0, 50, 75, 100, 125 mg/kg). The internal doses of 3-MCPD in the mice were calculated from N-(2,3-dihydroxypropyl)-valine adducts to hemoglobin (Hb), quantified at very low levels by high-resolution mass
spectrometry. Convincing evidence for absence of genotoxic potency in correlation to measured internal doses in the mice was demonstrated, despite relatively high administered doses of 3-MCPD. The results are discussed in relation to another food contaminant that is formed as ester in parallel to 3-MCPD esters in oil processing,
i.e. glycidol, which has been studied previously by us in a similar experimental setup. Glycidol has been shown to be genotoxic, and in addition to have ca. 1000 times higher rate of adduct formation compared to that observed for 3-MCPD. The conclusion is that at simultaneous exposure to 3-MCPD and glycidol the concern about genotoxicity would be glycidol.

Trends in black carbon and size-resolved particle number concentrations and vehicle emission factors under real-world conditions

Krecl, P.; Johansson, C.; Targino, A.C.; Ström, J.; Burman, L.
2017 | Atmos Environ | 165 (155-168)

Kerbside concentrations of NOx, black carbon (BC), total number of particles (diameter > 4 nm) and number size distribution (28–410 nm) were measured at a busy street canyon in Stockholm in 2006 and 2013. Over this period, there was an important change in the vehicle fleet due to a strong dieselisation process of light-duty vehicles and technological improvement of vehicle engines. This study assesses the impact of these changes on ambient concentrations and particle emission factors (EF). EF were calculated by using a novel approach which combines the NOx tracer method with positive matrix factorisation (PMF) applied to particle number size distributions. NOx concentrations remained rather constant between these two years, whereas a large decrease in particle concentrations was observed, being on average 60% for BC, 50% for total particle number, and 53% for particles in the range 28–100 nm. The PMF analysis yielded three factors that were identified as contributions from gasoline vehicles, diesel fleet, and urban background. This separation allowed the calculation of the average vehicle EF for each particle metric per fuel type. In general, gasoline EF were lower than diesel EF, and EF for 2013 were lower than the ones derived for 2006. The EFBC decreased 77% for both gasoline and diesel fleets, whereas the particle number EF reduction was higher for the gasoline (79%) than for the diesel (37%) fleet. Our EF are consistent with results from other on-road studies, which reinforces that the proposed methodology is suitable for EF determination and to assess the effectiveness of policies implemented to reduce vehicle exhaust emissions. However, our EF are much higher than EF simulated with traffic emission models (HBEFA and COPERT) that are based on dynamometer measurements, except for EFBC for diesel vehicles. This finding suggests that the EF from the two leading models in Europe should be revised for BC (gasoline vehicles) and particle number (all vehicles), since they are used to compile national inventories for the road transportation sector and also to assess their associated health effects. Using the calculated kerbside EF, we estimated that the traffic emissions were lower in 2013 compared to 2006 with a 61% reduction for BC (due to decreases in both gasoline and diesel emissions), and 34–45% for particle number (reduction only in gasoline emissions). Limitations of the application of these EF to other studies are also discussed.

Spatial Distributions of DDTs in the Water Masses of the Arctic Ocean

Carrizo, D.; Sobek, A.; Salvado, J.A.; Gustafsson, Ö.
2017 | Environ. Sci. Technol. | 51 (7913-7919)

Supporting variables for biological effects measurements in fish and blue mussel

Hansson, T.; Thain, J.; Martínez-Gómez, C.; Hylland, K.; Gubbins, M.; Balk, L.
2017 | ICES Techniques in Marine Environmental Sciences | 60 (1-22) | ISBN: 978-87-7482-200-4 | Report No: 60

Biological effects measurements in fish and blue mussel are fundamental in marine environmental monitoring. Nevertheless, currently used biomarkers may be confounded by basic physiological phenomena, such as growth, reproduction, and feeding, as well as thereby associated physiological variation. Here, we present a number of supporting variables, which are essential to measure in order to obtain reliable biological effects data, facilitate their interpretation, and make valid comparisons. For fish, these variables include: body weight, body length, condition, gonad maturation status, various somatic indices, age, and growth. For blue mussels, these variables include: volume, flesh weight, shell weight, and condition. Also, grossly visible anomalies, lesions, and parasites should be recorded for both fish and blue mussels. General confounding factors and their effects are described, as well as recommendations for how to handle them.

Quantifying short-chain chlorinated paraffin congener groups by isolating the response factors from deconvolved soft ionization mass spectra.

Yuan B.; Bogdal C.; Berger U.; Gebbink W.; MacLeod M.; Alsberg T.; de Wit C.A.
2017 | Environ. Sci. Technol. | 51 (10633-10641)

Quantifying short-chain chlorinated paraffin congener groups by isolating the response factors from deconvolved soft ionization mass spectra.

Yuan B.; Bogdal C.; Berger U.; Gebbink W.; MacLeod M.; Alsberg T.; de Wit C.A.
2017 | Environ. Sci. Technol. | 51 (10633-10641)

Historical human exposure to perfluoroalkyl acids in the United States and Australia reconstructed from biomonitoring data using population-based pharmacokinetic modelling

Gomis, M.I.; Vestergren, R.; MacLeod, M.; Mueller, J.F.; Cousins, I.T.
2017 | Environ Int | 108 (92-102)

Chemical composition and source analysis of carbonaceous aerosol particles at a mountaintop site in central Sweden

Vera Franke; Paul Zieger; Ulla Wideqvist; Juan Camilo Acosta Navarro; Caroline Leck; Peter Tunved; Bernadette Rosati; Martin Gysel; Matthew Salter; Johan Ström
2017 | Tellus Ser. B-Chem. Phys. Meteorol. | 69 (1)

Biotransformation of 8:2 polyfluoroalkyl phosphate diester in gilthead bream (Sparus aurata)

Itsaso Zabaleta; Ekhine Bizkarguenaga; Urtzi Izagirre; Noelia Negreira; Adrian Covaci; Jonathan P. Benskin; Ailette Prieto; Olatz Zuloaga;
2017 | Sci. Total Environ.

Polyfluoroalkyl phosphate esters (PAPs) are high production volume surfactants used in the food contact paper and packaging industry. PAPs may transform to persistent perfluoroalkyl carboxylic acids (PFCAs) under biotic conditions, but little is known about their fate and behavior in aquatic organisms. Here we report for the first time on the uptake, tissue distribution, and biotransformation of 8:2 polyfluoroalkyl phosphate diester (8:2 diPAP) in fish. Gilt-head bream (Sparus aurata) were dosed via the diet (8:2 diPAP at 29μg/ g) for 7days, during which time 8:2 diPAP and its transformation products were monitored in plasma, liver, muscle, gills, bile and brain. 8:2 diPAP tended to accumulate in liver, plasma and gills, and to a lesser extent in muscle, bile and brain. Several transformation products (observed previously in other organisms) were also observed in most tissues and biofluids, including both saturated and unsaturated fluorotelomer acids (8:2 FTCA, 8:2 FTUCA, 7:3 FTCA), and perfluorooctanoic acid (PFOA). 8:2 FTCA was the major metabolite in all tissues/biofluids, except for bile, where PFOA occurred at the highest concentrations. Unexpectedly high PFOA levels (up to 3.7ng/g) were also detected in brain. Phase II metabolites, which have been reported in fish following exposure to fluorotelomer alcohols, were not observed in these experiments, probably due to their low abundance. Nevertheless, the detection of PFOA indicates that exposure to PAPs may be an indirect route of exposure to PFCAs in fish.

Sea-air exchange patterns along the central and outer East Siberian Arctic Shelf as inferred from continuous CO2, stable isotope and bulk chemistry measurements

Christoph Humborg; Marc C. Geibel; Leif G. Anderson; Göran Björk; Carl-Magnus Mörth; Marcus Sundbom; Brett F. Thornton; Barbara Deutsch; Erik Gustafsson; Bo Gustafsson; Jörgen Ek; Igor P. Semiletov
2017 | Global Biogeochem Cycles | 31 (7) (1173-1193)

This large-scale quasi-synoptic study gives a comprehensive picture of sea-air CO2 fluxes during the melt season in the central and outer Laptev Sea (LS) and East Siberian Sea (ESS). During a 7 week cruise we compiled a continuous record of both surface water and air CO2 concentrations, in total 76,892 measurements. Overall, the central and outer parts of the ESAS constituted a sink for CO2, and we estimate a median uptake of 9.4 g C m−2 yr−1 or 6.6 Tg C yr−1. Our results suggest that while the ESS and shelf break waters adjacent to the LS and ESS are net autotrophic systems, the LS is a net heterotrophic system. CO2 sea-air fluxes for the LS were 4.7 g C m−2 yr−1, and for the ESS we estimate an uptake of 7.2 g C m−2 yr−1. Isotopic composition of dissolved inorganic carbon (δ13CDIC and δ13CCO2) in the water column indicates that the LS is depleted in δ13CDIC compared to the Arctic Ocean (ArcO) and ESS with an offset of 0.5‰ which can be explained by mixing of δ13CDIC-depleted riverine waters and 4.0 Tg yr−1 respiration of OCter; only a minor part (0.72 Tg yr−1) of this respired OCter is exchanged with the atmosphere. Property-mixing diagrams of total organic carbon and isotope ratio (δ13CSPE-DOC) versus dissolved organic carbon (DOC) concentration diagram indicate conservative and nonconservative mixing in the LS and ESS, respectively. We suggest land-derived particulate organic carbon from coastal erosion as an additional significant source for the depleted δ13CDIC.

Health Impact of PM10, PM2.5 and Black Carbon Exposure Due to Different Source Sectors in Stockholm, Gothenburg and Umea, Sweden.

Segersson, D.; Eneroth, K.; Gidhagen, L.; Johansson, C.; Omstedt, G.; Nylén A.E.; Forsberg, B.
2017 | Int J Environ Res Public Health | 14 (7)

The most important anthropogenic sources of primary particulate matter (PM) in ambient air in Europe are exhaust and non-exhaust emissions from road traffic and combustion of solid biomass. There is convincing evidence that PM, almost regardless of source, has detrimental health effects. An important issue in health impact assessments is what metric, indicator and exposure-response function to use for different types of PM. The aim of this study is to describe sectorial contributions to PM exposure and related premature mortality for three Swedish cities: Gothenburg, Stockholm and Umea. Exposure is calculated with high spatial resolution using atmospheric dispersion models. Attributed premature mortality is calculated separately for the main local sources and the contribution from long-range transport (LRT), applying different relative risks. In general, the main part of the exposure is due to LRT, while for black carbon, the local sources are equally or more important. The major part of the premature deaths is in our assessment related to local emissions, with road traffic and residential wood combustion having the largest impact. This emphasizes the importance to resolve within-city concentration gradients when assessing exposure. It also implies that control actions on local PM emissions have a strong potential in abatement strategies.

Contact information

Visiting addresses:

Geovetenskapens Hus,
Svante Arrhenius väg 8, Stockholm

Arrheniuslaboratoriet, Svante Arrhenius väg 16, Stockholm (Unit for Analytical and Toxicological Chemistry)

Mailing address:
Department of Environmental Science and Analytical Chemistry (ACES)
Stockholm University
106 91 Stockholm

Press enquiries should be directed to:

Annika Hallman
Science Communicator
Phone +46 (0)8 16 15 53
Mobile +46 (0)70 664 22 64
annika.hallman@su.se