Rapid urbanization and population growth drives increased air pollution across Sub-Saharan Africa with serious implications for human health, yet pollutant sources are poorly constrained. Here, we analyse fine particulate aerosol concentrations and radiocarbon composition of black carbon over a full annual cycle in Nairobi, Kenya. We find that particle concentrations exceed the World Health Organisation’s recommended safe limit throughout the year, with little seasonal variability in particle concentration or composition. Organics (49 ± 7%) and water-soluble inorganic ions, dominated by sulfates (13 ± 5%), constitute the largest contributors to the particle loadings. Unlike large cities on other continents, the fraction of black carbon in particles is high (15 ± 4%) suggesting black carbon is a prominent air pollutant in Nairobi. Radiocarbon-based source quantification indicates that fossil fuel combustion emissions are a dominant source of black carbon throughout the year (85 ± 3%). Taken together, this indicates that black carbon emissions from traffic are a key stressor for air quality in Nairobi.
Scientific paper
Tropical and Boreal Forest – Atmosphere Interactions: A Review
Paulo Artaxo; Hans-Christen Hansson; Meinrat O. Andreae; Jaana Bäck; Eliane Gomes Alves; Henrique M. J. Barbosa; Frida Bender; Efstratios Bourtsoukidis; Samara Carbone; Jinshu Chi; Stefano Decesari; Viviane R. Després; Florian Ditas; Ekaterina Ezhova; Sandro Fuzzi; Niles J. Hasselquist; Jost Heintzenberg; Bruna A. Holanda; Alex Guenther; Hannele Hakola; Liine Heikkinen; Veli-Matti Kerminen; Jenni Kontkanen; Radovan Krejci; Markku Kulmala; Jost V. Lavric; Gerrit de Leeuw; Katrianne Lehtipalo; Luiz Augusto T. Machado; Gordon McFiggans; arco Aurelio M. Franco; Bruno Backes Meller; Fernando G. Morais; Claudia Mohr; William Morgan; Mats B. Nilsson; Matthias Peichl; Tuukka Petäjä; Maria Praß; Christopher Pöhlker; Mira L. Pöhlker; Ulrich Pöschl; Celso Von Randow; Ilona Riipinen; Janne Rinne; Luciana V. Rizzo; Daniel Rosenfeld; Maria A. F. Silva Dias; Larisa Sogacheva; Philip Stier; Erik Swietlicki; Matthias Sörgel; Peter Tunved; Aki Virkkula; Jian Wang; Bettina Weber; Ana Maria Yáñez-Serrano; Paul Zieger; Eugene Mikhailov; James N. Smith; Jürgen Kesselmeier
2022
| TELLUS B
| 74
(24-163)
This review presents how the boreal and the tropical forests affect the atmosphere, its chemical composition, its function, and further how that affects the climate and, in return, the ecosystems through feedback processes. Observations from key tower sites standing out due to their long-term comprehensive observations: The Amazon Tall Tower Observatory in Central Amazonia, the Zotino Tall Tower Observatory in Siberia, and the Station to Measure Ecosystem-Atmosphere Relations at Hyytiäla in Finland. The review is complemented by short-term observations from networks and large experiments.
The review discusses atmospheric chemistry observations, aerosol formation and processing, physiochemical aerosol, and cloud condensation nuclei properties and finds surprising similarities and important differences in the two ecosystems. The aerosol concentrations and chemistry are similar, particularly concerning the main chemical components, both dominated by an organic fraction, while the boreal ecosystem has generally higher concentrations of inorganics, due to higher influence of long-range transported air pollution. The emissions of biogenic volatile organic compounds are dominated by isoprene and monoterpene in the tropical and boreal regions, respectively, being the main precursors of the organic aerosol fraction.
Observations and modeling studies show that climate change and deforestation affect the ecosystems such that the carbon and hydrological cycles in Amazonia are changing to carbon neutrality and affect precipitation downwind. In Africa, the tropical forests are so far maintaining their carbon sink.
It is urgent to better understand the interaction between these major ecosystems, the atmosphere, and climate, which calls for more observation sites, providing long-term data on water, carbon, and other biogeochemical cycles. This is essential in finding a sustainable balance between forest preservation and reforestation versus a potential increase in food production and biofuels, which are critical in maintaining ecosystem services and global climate stability. Reducing global warming and deforestation is vital for tropical forests.
Scientific paper
Earth observation: An integral part of a smart and sustainable city
Cut-size
,
Cyclone sampler
,
large eddy simulation
,
penetration
,
Penetration slope
,
Pressure drop
The flow pattern, cyclone pressure drop and particle penetration through a sampling cyclone have been studied at a wide range of flow rate 0.22–7.54 LPM using the LES simulations that have been validated based on experimental penetration data. The cyclone performance has been described by three dimensionless characteristics, the Euler number, cut-size and slope of the transformed penetration curve. Three main flow regimes and four sub-regimes have been revealed. The effects of the flow rate (Reynolds number) on the dimensionless cyclone performance characteristics have been described and a one-term power series model has been proposed. Additionally, the effect of the aspiration efficiency on the cyclone cut-size has been determined.
Scientific paper
Atmospheric composition in the European Arctic and 30 years of the Zeppelin Observatory, Ny-Ålesund
Platt, S. M.; Hov, Ø.; Berg, T.; Breivik, K.; Eckhardt, S.; Eleftheriadis, K.; Evangeliou, N.; Fiebig, M.; Fisher, R.; Hansen, G.; Hansson, H.-C.; Heintzenberg, J.; Hermansen, O.; Heslin-Rees, D.; Holmén, K.; Hudson, S.; Kallenborn, R.; Krejci, R.: Krognes, T.; Larssen, S.; Lowry, D.; Lund Myhre, C.; Lunder, C.; Nisbet, E.; Nizzetto, P. B.; Park, K.-T.; Pedersen, C. A.; Aspmo Pfaffhuber, K.; Röckmann, T.; Schmidbauer, N.; Solberg, S.; Stohl, A.; Ström, J.; Svendby, T.; Tunved, P.; Tørnkvist, K.; van der Veen, C.; Vratolis, S.; Yoon, Y. J.; Yttri, K. E.; Zieger, P.; Aas, W.; Tørseth, K.
2022
| Atmos. Chem. Phys.
| 22
(3321-3369)
The Zeppelin Observatory (78.90∘ N, 11.88∘ E) is located on Zeppelin Mountain at 472 m a.s.l. on Spitsbergen, the largest island of the Svalbard archipelago. Established in 1989, the observatory is part of Ny-Ålesund Research Station and an important atmospheric measurement site, one of only a few in the high Arctic, and a part of several European and global monitoring programmes and research infrastructures, notably the European Monitoring and Evaluation Programme (EMEP); the Arctic Monitoring and Assessment Programme (AMAP); the Global Atmosphere Watch (GAW); the Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS); the Advanced Global Atmospheric Gases Experiment (AGAGE) network; and the Integrated Carbon Observation System (ICOS). The observatory is jointly operated by the Norwegian Polar Institute (NPI), Stockholm University, and the Norwegian Institute for Air Research (NILU). Here we detail the establishment of the Zeppelin Observatory including historical measurements of atmospheric composition in the European Arctic leading to its construction. We present a history of the measurements at the observatory and review the current state of the European Arctic atmosphere, including results from trends in greenhouse gases, chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), other traces gases, persistent organic pollutants (POPs) and heavy metals, aerosols and Arctic haze, and atmospheric transport phenomena, and provide an outline of future research directions.
Scientific paper
Highly Active Ice-Nucleating Particles at the Summer North Pole
Grace C. E. Porter; Michael P. Adams; Ian M. Brooks; Luisa Ickes; Linn Karlsson; Caroline Leck; Matthew E. Salter; Julia Schmale; Karolina Siegel; Sebastien N. F. Sikora; Mark D. Tarn; Jutta Vüllers; Heini Wernli; Paul Zieger; Julika Zinke; Benjamin J. Murray
2022
| J. Geophys. Res.-Atmos.
| e2021JD036059
The amount of ice versus supercooled water in clouds is important for their radiative properties and role in climate feedbacks. Hence, knowledge of the concentration of ice-nucleating particles (INPs) is needed. Generally, the concentrations of INPs are found to be very low in remote marine locations allowing cloud water to persist in a supercooled state. We had expected the concentrations of INPs at the North Pole to be very low given the distance from open ocean and terrestrial sources coupled with effective wet scavenging processes. Here we show that during summer 2018 (August and September) high concentrations of biological INPs (active at >−20°C) were sporadically present at the North Pole. In fact, INP concentrations were sometimes as high as those recorded at mid-latitude locations strongly impacted by highly active biological INPs, in strong contrast to the Southern Ocean. Furthermore, using a balloon borne sampler we demonstrated that INP concentrations were often different at the surface versus higher in the boundary layer where clouds form. Back trajectory analysis suggests strong sources of INPs near the Russian coast, possibly associated with wind-driven sea spray production, whereas the pack ice, open leads, and the marginal ice zone were not sources of highly active INPs. These findings suggest that primary ice production, and therefore Arctic climate, is sensitive to transport from locations such as the Russian coast that are already experiencing marked climate change.
Scientific paper
An outdoor aging study to investigate the release of per- and polyfluoroalkyl substances (PFAS) from functional textiles
Influence of climate change on Persistent Organic Pollutants and Chemicals of Emerging Concern in the Arctic: State of knowledge and recommendations for future research.
Microplastics (MPs) pollution is one of the most important problems of the Earth. They have been found in all the natural environments, including oceans and the atmosphere. In this study, the concentrations of both atmospheric and marine MPs were measured over the Baltic along a research cruise that started in the Gdansk harbour, till the Gotland island, and the way back. A deposition box (based on a combination of active/passive sampling) was used to collect airborne MPs while, marine MPs concentrations were investigated during the cruise using a dedicated net. Ancillary data were obtained using a combination of particle counters (OPC, LAS and CPC), Aethalometer (AE33 Magee Scientific), spectrofluorometer (sea surface samples, Varian Cary Eclipse), and meteorological sensors. Results showed airborne microplastics average concentrations higher in the Gdansk harbour (161 ± 75 m−3) compared to the open Baltic Sea and to the Gotland island (24± 9 and 45 ±20 m−3). These latter values are closer to the ones measured in the sea (79±18m−3). The MPs composition was investigated using μ-Raman (for the airborne ones) and FTIR (for marine ones); similar results (e.g. polyethylene, polyethylene terephthalates, polyurethane) were found in the two environmental
<compartments. The concentrations and sd<dimilar composition in air and sea suggested a linkag e between the two compartments. For this purpose, the atmospheric MPs' equivalent aerodynamic diameter was calculated (28 ±3μm) first showing the capability of atmospheric MPs to remain suspended in the air. At the same time, the computed turnover times (0.3–90 h; depending on MPs size) limited the transport distance range. The estimated M-^Ps sea emission fluxes (4–18 ∗ 10^-6 μm^3 m−2 s−1 range) finally showed the contemporary presence of atmospheric transport together with a continuous emission fromthe sea surface enabling a grasshopper long-range transport ofmicroplastics across the sea.
Scientific paper
Sediment Remediation Using Activated Carbon: Effects of Sorbent Particle Size and Resuspension on Sequestration of Metals and Organic Contaminants
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checkbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
elementor
never
This cookie is used by the website's WordPress theme. It allows the website owner to implement or change the website's content in real-time.
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Cookie
Duration
Description
__cf_bm
30 minutes
This cookie, set by Cloudflare, is used to support Cloudflare Bot Management.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Cookie
Duration
Description
CONSENT
2 years
YouTube sets this cookie via embedded youtube-videos and registers anonymous statistical data.
vuid
2 years
Vimeo installs this cookie to collect tracking information by setting a unique ID to embed videos to the website.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Cookie
Duration
Description
VISITOR_INFO1_LIVE
5 months 27 days
A cookie set by YouTube to measure bandwidth that determines whether the user gets the new or old player interface.
YSC
session
YSC cookie is set by Youtube and is used to track the views of embedded videos on Youtube pages.
yt-remote-connected-devices
never
YouTube sets this cookie to store the video preferences of the user using embedded YouTube video.
yt-remote-device-id
never
YouTube sets this cookie to store the video preferences of the user using embedded YouTube video.