Introducing a nested multimedia fate and transport model for organic contaminants (NEM)

Breivik, K; Eckhardt, S; McLachlan, MS; Wania, F
2021 | Environ. Sci.-Process Impacts | 23 (8) (1146-1157)
atmospheric transport , environmental fate , global fractionation , historical emission inventory , long range transport , mass-balance models , polybrominated diphenyl ethers , polychlorinated-biphenyls pcbs , polycyclic aromatic hydrocarbons , temporal trends
Some organic contaminants, including the persistent organic pollutants (POPs), have achieved global distribution through long range atmospheric transport (LRAT). Regulatory efforts, monitoring programs and modelling studies address the LRAT of POPs on national, continental (e.g. Europe) and/or global scales. Whereas national and continental-scale models require estimates of the input of globally dispersed chemicals from outside of the model domain, existing global-scale models either have relatively coarse spatial resolution or are so computationally demanding that it limits their usefulness. Here we introduce the Nested Exposure Model (NEM), which is a multimedia fate and transport model that is global in scale yet can achieve high spatial resolution of a user-defined target region without huge computational demands. Evaluating NEM by comparing model predictions for PCB-153 in air with measurements at nine long-term monitoring sites of the European Monitoring and Evaluation Programme (EMEP) reveals that nested simulations at a resolution of 1 degrees x 1 degrees yield results within a factor of 1.5 of observations at sites in northern Europe. At this resolution, the model attributes more than 90% of the atmospheric burden within any of the grid cells containing an EMEP site to advective atmospheric transport from elsewhere. Deteriorating model performance with decreasing resolution (15 degrees x 15 degrees, 5 degrees x 5 degrees and 1 degrees x 1 degrees), manifested by overestimation of concentrations across most of northern Europe by more than a factor of 3, illustrates the effect of numerical diffusion. Finally, we apply the model to demonstrate how the choice of spatial resolution affect predictions of atmospheric deposition to the Baltic Sea. While we envisage that NEM may be used for a wide range of applications in the future, further evaluation will be required to delineate the boundaries of applicability towards chemicals with divergent fate properties as well as in environmental media other than air.

Transformation of organic micropollutants along hyporheic flow in bedforms of river-simulating flumes

Jaeger, A; Posselt, M; Schaper, JL; Betterle, A; Rutere, C; Coll, C; Mechelke, J; Raza, M; Meinikmann, K; Portmann, A; Blaen, PJ; Horn, MA; Krause, S; Lewandowski, J
2021 | Sci Rep | 11 (1)
attenuation , biotransformation , denitrification , ecology , exchange , fate , identification , pharmaceuticals , products , zone
Urban streams receive increasing loads of organic micropollutants from treated wastewaters. A comprehensive understanding of the in-stream fate of micropollutants is thus of high interest for water quality management. Bedforms induce pumping effects considerably contributing to whole stream hyporheic exchange and are hotspots of biogeochemical turnover processes. However, little is known about the transformation of micropollutants in such structures. In the present study, we set up recirculating flumes to examine the transformation of a set of micropollutants along single flowpaths in two triangular bedforms. We sampled porewater from four locations in the bedforms over 78 days and analysed the resulting concentration curves using the results of a hydrodynamic model in combination with a reactive transport model accounting for advection, dispersion, first-order removal and retardation. The four porewater sampling locations were positioned on individual flowpaths with median solute travel times ranging from 11.5 to 43.3 h as shown in a hydrodynamic model previously. Highest stability was estimated for hydrochlorothiazide on all flowpaths. Lowest detectable half-lives were estimated for sotalol (0.7 h) and sitagliptin (0.2 h) along the shortest flowpath. Also, venlafaxine, acesulfame, bezafibrate, irbesartan, valsartan, ibuprofen and naproxen displayed lower half-lives at shorter flowpaths in the first bedform. However, the behavior of many compounds in the second bedform deviated from expectations, where particularly transformation products, e.g. valsartan acid, showed high concentrations. Flowpath-specific behavior as observed for metformin or flume-specific behavior as observed for metoprolol acid, for instance, was attributed to potential small-scale or flume-scale heterogeneity of microbial community compositions, respectively. The results of the study indicate that the shallow hyporheic flow field and the small-scale heterogeneity of the microbial community are major controlling factors for the transformation of relevant micropollutants in river sediments.

Ship- and island-based atmospheric soundings from the 2020 EUREC(4)A field campaign

Stephan, CC; Schnitt, S; Schulz, H; Bellenger, H; de Szoeke, SP; Acquistapace, C; Baier, K; Dauhut, T; Laxenaire, R; Morfa-Avalos, Y; Person, R; Melendez, EQ; Bagheri, G; Bock, T; Daley, A; Guttler, J; Helfer, KC; Los, SA; Neuberger, A; Rottenbacher, J; Raeke, A; Ringel, M; Ritschel, M; Sadoulet, P; Schirmacher, I; Stolla, MK; Wright, E; Charpentier, B; Doerenbecher, A; Wilson, R; Jansen, F; Kinne, S; Reverdin, G; Speich, S; Bony, S; Stevens, B
2021 | Earth Syst. Sci. Data | 13 (2) (491-514)
boundary layer , clouds , heat , mass , model , precipitation , sea-level , shallow cumulus , thermodynamic structure
To advance the understanding of the interplay among clouds, convection, and circulation, and its role in climate change, the Elucidating the role of clouds-circulation coupling in climate campaign (EUREC(4)A) and Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC) collected measurements in the western tropical Atlantic during January and February 2020. Upper-air radiosondes were launched regularly (usually 4-hourly) from a network consisting of the Barbados Cloud Observatory (BCO) and four ships within 6-16 degrees N, 51-60 degrees W. From 8 January to 19 February, a total of 811 radiosondes measured wind, temperature, and relative humidity. In addition to the ascent, the descent was recorded for 82% of the soundings. The soundings sampled changes in atmospheric pressure, winds, lifting condensation level, boundary layer depth, and vertical distribution of moisture associated with different ocean surface conditions, synoptic variability, and mesoscale convective organization. Raw (Level 0), quality-controlled 1 s (Level 1), and vertically gridded (Level 2) data in NetCDF format (Stephan et al., 2020) are available to the public at AERIS ( The methods of data collection and post-processing for the radiosonde data set are described here.

Guide to Semi-Quantitative Non-Targeted Screening Using LC/ESI/HRMS

Malm, L; Palm, E; Souihi, A; Plassmann, M; Liigand, J; Kruve, A
2021 | Molecules | 26 (12)
contaminants , decision making , electrospray-ionization , ion suppression , ionization , ionization efficiency scale , metabolomics data , mobile-phase , nts strategies , quantification , resolution-mass-spectrometry , system , waste-water
Non-targeted screening (NTS) with reversed phase liquid chromatography electrospray ionization high resolution mass spectrometry (LC/ESI/HRMS) is increasingly employed as an alternative to targeted analysis; however, it is not possible to quantify all compounds found in a sample with analytical standards. As an alternative, semi-quantification strategies are, or at least should be, used to estimate the concentrations of the unknown compounds before final decision making. All steps in the analytical chain, from sample preparation to ionization conditions and data processing can influence the signals obtained, and thus the estimated concentrations. Therefore, each step needs to be considered carefully. Generally, less is more when it comes to choosing sample preparation as well as chromatographic and ionization conditions in NTS. By combining the positive and negative ionization mode, the performance of NTS can be improved, since different compounds ionize better in one or the other mode. Furthermore, NTS gives opportunities for retrospective analysis. In this tutorial, strategies for semi-quantification are described, sources potentially decreasing the signals are identified and possibilities to improve NTS are discussed. Additionally, examples of retrospective analysis are presented. Finally, we present a checklist for carrying out semi-quantitative NTS.

Quantification and implication of measurement bias of ambient atmospheric BC concentration

Li, CL; Zhang, C; Kang, SC; Gustafsson, O
2021 | Atmos Environ | 249
ambient particle , black carbon , emission inventories , pm2.5
Black carbon (BC) aerosols have severe impacts on climate and health. Most atmospheric BC loadings are now predominantly reported for the PM2.5 size cut-off. Based on 39 published set of ambient BC concentrations from around the world where PM2.5 and PM10 were collected in parallel, we demonstrate that BC in PM2.5 was only around 80% of that in PM10. The implication is that around 20% of BC in the global ambient atmosphere is ignored with the now-legacy PM2.5 sampling approach. Correspondingly, BC of freshly emitted particles from combustion activities is dominantly reported in terms of PM2.5, and thus inflicting a bias in the total BC emission inventories. A consequence is that ambient BC is underpredicted when derived from models based on (PM2.5) emission inventories. This consideration contributes to reconcile existing systematic offset between model predictions and observation-based estimates of climate-relevant effects of anthropogenic BC aerosols. We propose that total ambient BC concentration should be considered rather than the PM2.5 portion to reduce the uncertainties in estimates of BC effects on the climate.

Long-term trends in nitrogen oxides concentrations and on-road vehicle emission factors in Copenhagen, London and Stockholm

Krecl, P; Harrison, RM; Johansson, C; Targino, AC; Beddows, DC; Ellermann, T; Lara, C; Ketzel, M
2021 | Environ. Pollut. | 290
air quality , air quality in europe , atmospheric pollutants , black carbon , dieselization , model , no2 concentrations , nox , ospm model , particle number , policy , pollution , road transport , street , urban
Road transport is the main anthropogenic source of NOx in Europe, affecting human health and ecosystems. Thus, mitigation policies have been implemented to reduce on-road vehicle emissions, particularly through the Euro standard limits. To evaluate the effectiveness of these policies, we calculated NO2 and NOx concentration trends using air quality and meteorological measurements conducted in three European cities over 26 years. These data were also employed to estimate the trends in NOx emission factors (EFNox, based on inverse dispersion modeling) and NO2:NOx emission ratios for the vehicle fleets under real-world driving conditions. In the period 1998-2017, Copenhagen and Stockholm showed large reductions in both the urban background NOx concentrations (-2.1 and -2.6% yr(-1), respectively) and EFNox at curbside sites (68 and 43%, respectively), proving the success of the Euro standards in diminishing NOx emissions. London presented a modest decrease in urban background NOx concentrations (-1.3% yr(-1)), while EFNox remained rather constant at the curbside site (Marylebone Road) due to the increase in public bus traffic. NO2 primary emissions -that are not regulated- increased until 2008-2010, which also reflected in the ambient concentrations. This increase was associated with a strong dieselization process and the introduction of new after-treatment technologies that targeted the emission reduction of other species (e.g., greenhouse gases or particulate matter). Thus, while regulations on ambient concentrations of specific species have positive effects on human health, the overall outcomes should be considered before widely adopting them. Emission inventories for the on-road transportation sector should include EFNox derived from real-world measurements, particularly in urban settings.

Influence of Water Concentrations of Perfluoroalkyl Acids (PFAAs) on Their Size-Resolved Enrichment in Nascent Sea Spray Aerosols

2021 | Environ. Sci. Technol. | 55 (14) (9489-9497)
adsorption , anionic surfactants , atmosphere , fate , fractionation , inventories , polyfluoroalkyl substances pfass , sulfonate , to-air transfer , transport
Perfluoroalkyl acids (PFAAs) are persistent organic substances that have been widely detected in the global oceans. Previous laboratory experiments have demonstrated effective enrichment of PFAAs in nascent sea spray aerosols (SSA), suggesting that SSA are an important source of PFAAs to the atmosphere. In the present study, the effects of the water concentration of PFAAs on their size-resolved enrichment in SSA were examined using a sea spray simulation chamber. Aerosolization of the target compounds in almost all sizes of SSA revealed a strong linear relationship with their water concentrations (p < 0.05, r(2) > 0.9). The enrichment factors (EF) of the target compounds showed no correlation with their concentrations in the chamber water, despite the concentrations varying by a factor of 500 (similar to 0.3 to similar to 150 ng L-1). The particle surface-area-to-volume ratio appeared to be a key predictor of the enrichment of perfluoroalkyl carboxylic acids (PFCAs) with >= 7 perfluorinated carbons and perfluoroalkanesulfonic acids (PFSAs) with >= 6 perfluorinated carbons in supermicron particles (p < 0.05, r(2) > 0.8), but not in submicron particles. The different enrichment behaviors of PFAAs in submicron and supermicron particles might be a result of the different production mechanisms of film droplets and jet droplets. The results suggest that the variability in seawater concentrations of PFAAs has little influence on EFs and that modeling studies designed to quantify the source of PFAAs via SSA emissions do not need to consider this factor.

Microalgal growth, nitrogen uptake and storage, and dissolved oxygen production in a polyculture based-open pond fed with municipal wastewater in northern Sweden

Lage, S; Toffolo, A; Gentili, FG
2021 | Chemosphere | 276
algae , biofuels , biomass production , cultivation , culture , dynamics , flue gases , microalgae , nitrogen , nutrient removal , nutrients removal , phosphorous , phosphorus removal , strains , temperature , wastewater
Microalgal-based wastewater treatment and CO2 sequestration from flue gases with subsequent biomass production represent a low-cost, eco-friendly, and effective procedure of removing nutrients and other pollutants from wastewater and assists in the decrease of greenhouse gas emissions. Thus, it supports a circular economy model. This is based on the ability of microalgae to utilise inorganic nutrients, mainly nitrogen and phosphorous, as well as organic and inorganic carbon, for their growth, and simultaneously reduce these substances in the water. However, the production of microalgae biomass under outdoor cultivation is dependent on several abiotic and biotic factors, which impact its profitability and sustainability. Thus, this study's goal was to evaluate the factors affecting the production of microalgae biomass on pilot-scale open raceway ponds under Northern Sweden's summer conditions with the help of a mathematical model. For this purpose, a microalgae consortium and a monoculture of Chlorella vulgaris were used to inoculate outdoor open raceway ponds. In line with the literature, higher biomass concentrations and nutrient removals were observed in ponds inoculated with the microalgae consortium. Our model, based on Droop's concept of macronutrient quotas inside the cell, corresponded well to the experimental data and, thus, can successfully be applied to predict biomass production, nitrogen uptake and storage, and dissolved oxygen production in microalgae consortia. (C) 2021 The Author(s). Published by Elsevier Ltd.

Chemical profiling of the Arctic sea lettuce Ulva lactuca (Chlorophyta) mass-cultivated on land under controlled conditions for food applications

Roleda, MY; Lage, S; Aluwini, DF; Rebours, C; Brurberg, MB; Nitschke, U; Gentili, FG
2021 | Food Chem | 341
acid-composition , amino-acid , amino-acids , bulk biomass , diversity , edible seaweeds , fatty acid , food quality , heavy metals , iodine , liquid chromatography , microalgae , minerals , nordic cuisine , prolifera , protein , sugar , toxic elements
The increasing use of seaweeds in European cuisine led to cultivation initiatives funded by the European Union. Ulva lactuca, commonly known as sea lettuce, is a fast growing seaweed in the North Atlantic that chefs are bringing into the local cuisine. Here, different strains of Arctic U. lactuca were mass-cultivated under controlled conditions for up to 10 months. We quantified various chemical constituents associated with both health benefits (carbohydrates, protein, fatty acids, minerals) and health risks (heavy metals). Chemical analyses showed that long-term cultivation provided biomass of consistently high food quality and nutritional value. Concentrations of macroelements (C, N, P, Ca, Na, K, Mg) and micronutrients (Fe, Zn, Co, Mn, I) were sufficient to contribute to daily dietary mineral intake. Heavy metals (As, Cd, Hg and Pb) were found at low levels to pose health risk. The nutritional value of Ulva in terms of carbohydrates, protein and fatty acids is comparable to some selected fruits, vegetables, nuts and grains.

Can determination of extractable organofluorine (EOF) be standardized? First interlaboratory comparisons of EOF and fluorine mass balance in sludge and water matrices

Karrman, A; Yeung, LWY; Spaan, KM; Lange, FT; Nguyen, MA; Plassmann, M; De Wit, CA; Scheurer, M; Awad, R; Benskin, JP
2021 | Environ. Sci.-Process Impacts | 23 (10) (1458-1465)
combustion ion chromatography , organic fluorine , perfluoroalkyl substances , polyfluoroalkyl substances , precursors , samples
The high proportion of unidentified extractable organofluorine (EOF) observed globally in humans and the environment indicates widespread occurrence of unknown per- and polyfluoroalkyl substances (PFAS). However, efforts to standardize or assess the reproducibility of EOF methods are currently lacking. Here we present the first EOF interlaboratory comparison in water and sludge. Three participants (four organizations) analyzed unfortified and PFAS-fortified ultrapure water, two unfortified groundwater samples, unfortified wastewater treatment plant effluent and sludge, and an unfortified groundwater extract. Participants adopted common sample handling strategies and target lists for EOF mass balance but used in-house combustion ion-chromatography (CIC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. EOF accuracy ranged from 85-101% and 76-109% for the 60 and 334 ng L-1 fluorine (F) - fortified water samples, respectively, with between-laboratory variation of 9-19%, and within-laboratory variation of 3-27%. In unfortified sludge and aqueous samples, between-laboratory variation ranged from 21-37%. The contribution from sum concentrations of 16 individual PFAS ( n-ary sumation PFAS-16) to EOF ranged from 2.2-60% but extended analysis showed that other targets were prevalent, in particular ultra-short-chain perfluoroalkyl acids (e.g. trifluoroacetic acid) in aqueous samples and perfluoroalkyl acid-precursors (e.g. polyfluoroalkyl phosphate diesters) in sludge. The EOF-CIC method demonstrated promising accuracy, robustness and reporting limits but poor extraction efficiency was observed for some targets (e.g. trifluoroacetic acid).

The importance of Aitken mode aerosol particles for cloud sustenance in the summertime high Arctic – a simulation study supported by observational data

Bulatovic, I; Igel, AL; Leck, C; Heintzenberg, J; Riipinen, I; Ekman, AML
2021 | Atmos. Chem. Phys. | 21 (5) (3871-3897)
The potential importance of Aitken mode particles (diameters similar to 25-80 nm) for stratiform mixed-phase clouds in the summertime high Arctic (> 80 degrees N) has been investigated using two large-eddy simulation models. We find that, in both models, Aitken mode particles significantly affect the simulated microphysical and radiative properties of the cloud and can help sustain the cloud when accumulation mode concentrations are low (< 10-20 cm(-3)), even when the particles have low hygroscopicity (hygroscopicity parameter - kappa = 0.1). However, the influence of the Aitken mode decreases if the overall liquid water content of the cloud is low, either due to a higher ice fraction or due to low radiative cooling rates. An analysis of the simulated supersaturation (ss) statistics shows that the ss frequently reaches 0.5 % and sometimes even exceeds 1 %, which confirms that Aitken mode particles can be activated. The modelling results are in qualitative agreement with observations of the Hoppel minimum obtained from four different expeditions in the high Arctic. Our findings highlight the importance of better understanding Aitken mode particle formation, chemical properties and emissions, particularly in clean environments such as the high Arctic.

The Role of Behavioral Ecotoxicology in Environmental Protection

Ford, AT; Agerstrand, M; Brooks, BW; Allen, J; Bertram, MG; Brodin, T; Dang, ZC; Duquesne, S; Sahm, R; Hoffmann, F; Hollert, H; Jacob, S; Kluver, N; Lazorchak, JM; Ledesma, M; Melvin, SD; Mohr, S; Padilla, S; Pyle, GG; Scholz, S; Saaristo, M; Smit, E; Steevens, JA; van den Berg, S; Kloas, W; Wong, BBM; Ziegler, M; Maack, G
2021 | Environ. Sci. Technol. | 55 (9) (5620-5628)
consequences , ecology , evolution , mate choice , pollution , support , survival , toxicology
For decades, we have known that chemicals affect human and wildlife behavior. Moreover, due to recent technological and computational advances, scientists are now increasingly aware that a wide variety of contaminants and other environmental stressors adversely affect organismal behavior and subsequent ecological outcomes in terrestrial and aquatic ecosystems. There is also a groundswell of concern that regulatory ecotoxicology does not adequately consider behavior, primarily due to a lack of standardized toxicity methods. This has, in turn, led to the exclusion of many behavioral ecotoxicology studies from chemical risk assessments. To improve understanding of the challenges and opportunities for behavioral ecotoxicology within regulatory toxicology/risk assessment, a unique workshop with international representatives from the fields of behavioral ecology, ecotoxicology, regulatory (eco)toxicology, neurotoxicology, test standardization, and risk assessment resulted in the formation of consensus perspectives and recommendations, which promise to serve as a roadmap to advance interfaces among the basic and translational sciences, and regulatory practices.

Contact information

Visiting addresses:

Geovetenskapens Hus,
Svante Arrhenius väg 8, Stockholm

Arrheniuslaboratoriet, Svante Arrhenius väg 16, Stockholm (Unit for Toxicological Chemistry)

Mailing address:
Department of Environmental Science
Stockholm University
106 91 Stockholm

Press enquiries should be directed to:

Stella Papadopoulou
Science Communicator
Phone +46 (0)8 674 70 11