Found: 7003 publications , showing page 584 of 584
Scientific paper
The Use of Carbonaceous Particle Exposure Metrics in Health Impact Calculations
| Int J Environ Res Public Health
| 13
(3)
(249:1-249:17)
black carbon
,
black smoke
,
combustion-related particles
,
elemental carbon
,
health effects
,
pm10
,
relative risk
,
urban air pollution
Combustion-related carbonaceous particles seem to be a better indicator of adverse health effects compared to PM2.5 and PM10. Historical studies are based on black smoke (BS), but more recent studies use absorbance (Abs), black carbon (BC) or elemental carbon (EC) as exposure indicators. To estimate health risks based on BS, we review the literature regarding the relationship between Abs, BS, BC and EC. We also discuss the uncertainties associated with the comparison of relative risks (RRs) based on these conversions. EC is reported to represent a proportion between 5.2% and 27% of BS with a mean value of 12%. Correlations of different metrics at one particular site are higher than when different sites are compared. Comparing all traffic, urban and rural sites, there is no systematic site dependence, indicating that other properties of the particles or errors affect the measurements and obscure the results. It is shown that the estimated daily mortality associated with short-term levels of EC is in the same range as PM10, but this is highly dependent on the EC to BS relationship that is used. RRs for all-cause mortality associated with short-term exposure to PM10 seem to be higher at sites with higher EC concentrations, but more data are needed to verify this.
Scientific paper
On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models
| Atmos. Chem. Phys.
| 16
(2765-2783)
Aerosol–cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascent (ω500 < −25 hPa day−1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is close to that in subsidence regimes, which indicates that regimes with strong large-scale ascent are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm day−1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes compared to the uncertainty in its global mean values, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.
Scientific paper
Madrid Statement on Poly- and Perfluoroalkyl Substances (PFASs)
| Environ. Health Perspect.
| 123
(A107-A111)
Scientific paper
LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles – Part 1: Principle of measurements and instrument evaluation
| Atmos. Meas. Tech.
| 9
(1721-1742)
The study of aerosols in the troposphere and in the stratosphere is of major importance both for climate and air quality studies. Among the numerous instruments available, optical aerosol particles counters (OPCs) provide the size distribution in diameter range from about 100 nm to a few tens of µm. Most of them are very sensitive to the nature of aerosols, and this can result in significant biases in the retrieved size distribution. We describe here a new versatile optical particle/sizer counter named LOAC (Light Optical Aerosol Counter), which is light and compact enough to perform measurements not only at the surface but under all kinds of balloons in the troposphere and in the stratosphere. LOAC is an original OPC performing observations at two scattering angles. The first one is around 12°, and is almost insensitive to the refractive index of the particles; the second one is around 60° and is strongly sensitive to the refractive index of the particles. By combining measurement at the two angles, it is possible to retrieve the size distribution between 0.2 and 100 µm and to estimate the nature of the dominant particles (droplets, carbonaceous, salts and mineral particles) when the aerosol is relatively homogeneous. This typology is based on calibration charts obtained in the laboratory. The uncertainty for total concentrations measurements is ±20 % when concentrations are higher than 1 particle cm−3 (for a 10 min integration time). For lower concentrations, the uncertainty is up to about ±60 % for concentrations smaller than 10−2 particle cm−3. Also, the uncertainties in size calibration are ±0.025 µm for particles smaller than 0.6 µm, 5 % for particles in the 0.7–2 µm range, and 10 % for particles greater than 2 µm. The measurement accuracy of submicronic particles could be reduced in a strongly turbid case when concentration of particles > 3 µm exceeds a few particles cm−3. Several campaigns of cross-comparison of LOAC with other particle counting instruments and remote sensing photometers have been conducted to validate both the size distribution derived by LOAC and the retrieved particle number density. The typology of the aerosols has been validated in well-defined conditions including urban pollution, desert dust episodes, sea spray, fog, and cloud. Comparison with reference aerosol mass monitoring instruments also shows that the LOAC measurements can be successfully converted to mass concentrations.
Presentation abstract
Identifying chemicals that are planetary boundary threats-
| Society of Environmental Toxicology and Chemistry (SETAC)
Inflammatory markers and exposure to airborne particles among workers in a Swedish pulp and paper mill
| Int Arch Occup Environ Health
| Online First
C-reactive protein (CRP)
,
Fibrinogen
,
Interleukins (IL-1b IL-6 IL-8 and IL-10)
,
pm10
,
pm2.5
,
Respirable dust
,
Serum amyloid A (SAA)
Purpose To study the relationship between exposure to airborne particles in a pulp and paper mill and markers of inflammation and coagulation in blood. Methods Personal sampling of inhalable dust was performed for 72 subjects working in a Swedish pulp and paper mill. Stationary measurements were used to study concentrations of total dust, respirable dust, PM10 and PM2.5, the particle surface area and the particle number concentrations. Markers of inflammation, interleukins (IL-1b, IL-6, IL-8, and IL-10), C-reactive protein (CRP), serum amyloid A (SAA), and fibrinogen and markers of coagulation factor VIII, von Willebrand, plasminogen activator inhibitor, and D-dimer were measured in plasma or serum. Sampling was performed on the last day of the work free period of 5 days, before and after the shift the first day of work and after the shifts the second and third day. In a mixed model analysis, the relationship between particulate exposures and inflammatory markers was determined. Sex, age, smoking, and BMI were included as covariates. Results The average 8-h time-weighted average (TWA) air concentration levels of inhalable dust were 0.30 mg/m3, range 0.005–3.3 mg/m3. The proxies for average 8-h TWAs of respirable dust were 0.045 mg/m3. Significant and consistent positive relations were found between several exposure metrics (PM 10, total and inhalable dust) and CRP, SAA and fibrinogen taken post-shift, suggesting a dose–effect relationship. Conclusion This study supports a relationship between occupational particle exposure and established inflammatory markers, which may indicate an increased risk of cardiovascular disease.
Scientific paper
The importance of temporal collocation for the evaluation of aerosol models with observations
| Atmos. Chem. Phys.
| 16
(2)
(1065-1079)
It is often implicitly assumed that over suitably long periods the mean of observations and models should be comparable, even if they have different temporal sampling. We assess the errors incurred due to ignoring temporal sampling and show that they are of similar magnitude as (but smaller than) actual model errors (20–60 %).
Using temporal sampling from remote-sensing data sets, the satellite imager MODIS (MODerate resolution Imaging Spectroradiometer) and the ground-based sun photometer network AERONET (AErosol Robotic NETwork), and three different global aerosol models, we compare annual and monthly averages of full model data to sampled model data. Our results show that sampling errors as large as 100 % in AOT (aerosol optical thickness), 0.4 in AE (Ångström Exponent) and 0.05 in SSA (single scattering albedo) are possible. Even in daily averages, sampling errors can be significant. Moreover these sampling errors are often correlated over long distances giving rise to artificial contrasts between pristine and polluted events and regions. Additionally, we provide evidence that suggests that models will underestimate these errors. To prevent sampling errors, model data should be temporally collocated to the observations before any analysis is made.
We also discuss how this work has consequences for in situ measurements (e.g. aircraft campaigns or surface measurements) in model evaluation.
Although this study is framed in the context of model evaluation, it has a clear and direct relevance to climatologies derived from observational data sets.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checkbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
elementor
never
This cookie is used by the website's WordPress theme. It allows the website owner to implement or change the website's content in real-time.
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Cookie
Duration
Description
__cf_bm
30 minutes
This cookie, set by Cloudflare, is used to support Cloudflare Bot Management.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Cookie
Duration
Description
CONSENT
2 years
YouTube sets this cookie via embedded youtube-videos and registers anonymous statistical data.
vuid
2 years
Vimeo installs this cookie to collect tracking information by setting a unique ID to embed videos to the website.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Cookie
Duration
Description
VISITOR_INFO1_LIVE
5 months 27 days
A cookie set by YouTube to measure bandwidth that determines whether the user gets the new or old player interface.
YSC
session
YSC cookie is set by Youtube and is used to track the views of embedded videos on Youtube pages.
yt-remote-connected-devices
never
YouTube sets this cookie to store the video preferences of the user using embedded YouTube video.
yt-remote-device-id
never
YouTube sets this cookie to store the video preferences of the user using embedded YouTube video.