Amplification of Arctic warming by past air pollution reductions in Europe

| Nat. Geosci. | Advance online publication
atmospheric chemistry , atmospheric dynamics , attribution , climate and earth system modelling

The Arctic region is warming considerably faster than the rest of the globe1, with important consequences for the ecosystems2 and human exploration of the region3. However, the reasons behind this Arctic amplification are not entirely clear4. As a result of measures to enhance air quality, anthropogenic emissions of particulate matter and its precursors have drastically decreased in parts of the Northern Hemisphere over the past three decades5. Here we present simulations with an Earth system model with comprehensive aerosol physics and chemistry that show that the sulfate aerosol reductions in Europe since 1980 can potentially explain a significant fraction of Arctic warming over that period. Specifically, the Arctic region receives an additional 0.3 W m−2 of energy, and warms by 0.5 °C on annual average in simulations with declining European sulfur emissions in line with historical observations, compared with a model simulation with fixed European emissions at 1980 levels. Arctic warming is amplified mainly in fall and winter, but the warming is initiated in summer by an increase in incoming solar radiation as well as an enhanced poleward oceanic and atmospheric heat transport. The simulated summertime energy surplus reduces sea-ice cover, which leads to a transfer of heat from the Arctic Ocean to the atmosphere. We conclude that air quality regulations in the Northern Hemisphere, the ocean and atmospheric circulation, and Arctic climate are inherently linked.

Human exposure, hazard and risk of alternative plasticizers to phthalate esters

| Sci. Total Environ. | 541 (451-467)

Madrid Statement on Poly- and Perfluoroalkyl Substances (PFASs)

| Environ. Health Perspect. | 123 (A107-A111)

The significance of land-atmosphere interactions in the Earth system—iLEAPS achievements and perspectives

| Antropocene | In press

The integrated land ecosystem-atmosphere processes study (iLEAPS) is an international research project focussing on the fundamental processes that link land-atmosphere exchange, climate, the water cycle, and tropospheric chemistry. The project, iLEAPS, was established 2004 within the International Geosphere-Biosphere Programme (IGBP). During its first decade, iLEAPS has proven to be a vital project, well equipped to build a community to address the challenges involved in understanding the complex Earth system: multidisciplinary, integrative approaches for both observations and modeling. The iLEAPS community has made major advances in process understanding, land-surface modeling, and observation techniques and networks. The modes of iLEAPS operation include elucidating specific iLEAPS scientific questions through networks of process studies, field campaigns, modeling, long-term integrated field studies, international interdisciplinary mega-campaigns, synthesis studies, databases, as well as conferences on specific scientific questions and synthesis meetings. Another essential component of iLEAPS is knowledge transfer and it also encourages community- and policy-related outreach activities associated with the regional integrative projects. As a result of its first decade of work, iLEAPS is now setting the agenda for its next phase (2014–2024) under the new international initiative, future Earth. Human influence has always been an important part of land-atmosphere science but in order to respond to the new challenges of global sustainability, closer ties with social science and economics groups will be necessary to produce realistic estimates of land use and anthropogenic emissions by analysing future population increase, migration patterns, food production allocation, land management practices, energy production, industrial development, and urbanization.

Identifying chemicals that are planetary boundary threats-

| Society of Environmental Toxicology and Chemistry (SETAC)

SETAC Europe, 25th Annual Meeting | January 28, 2021 | Barcelona, Spain

Erratum to ‘Biomagnification of Organic Pollutants in Benthic and Pelagic Marine Food Chains from the Baltic Sea.’

| Sci. Total Environ. | 407 (21) (5803-5804)

Contact information

Visiting addresses:

Geovetenskapens Hus,
Svante Arrhenius väg 8, Stockholm

Arrheniuslaboratoriet, Svante Arrhenius väg 16, Stockholm (Unit for Toxicological Chemistry)

Mailing address:
Department of Environmental Science
Stockholm University
106 91 Stockholm

Press enquiries should be directed to:

Stella Papadopoulou
Science Communicator
Phone +46 (0)8 674 70 11
stella.papadopoulou@aces.su.se