Cellular Dose of Partly Soluble Cu Particle Aerosols at the Air–Liquid Interface Using an In Vitro Lung Cell Exposure System

| J Aerosol Med Pulm Drug Deliv | 26 (2) (84-93)
air–liquid interface , cellular doses , copper particles , in vitro exposure system , nanoparticle deposition , nanoparticle dissolution , nanotoxicology

BACKGROUND:
There is currently a need to develop and test in vitro systems for predicting the toxicity of nanoparticles. One challenge is to determine the actual cellular dose of nanoparticles after exposure.
METHODS:
In this study, human epithelial lung cells (A549) were exposed to airborne Cu particles at the air-liquid interface (ALI). The cellular dose was determined for two different particle sizes at different deposition conditions, including constant and pulsed Cu aerosol flow.
RESULTS:
Airborne polydisperse particles with a geometric mean diameter (GMD) of 180 nm [geometric standard deviation (GSD) 1.5, concentration 10(5) particles/mL] deposited at the ALI yielded a cellular dose of 0.4-2.6 μg/cm(2) at pulsed flow and 1.6-7.6 μg/cm(2) at constant flow. Smaller polydisperse particles in the nanoregime (GMD 80 nm, GSD 1.5, concentration 10(7) particles/mL) resulted in a lower cellular dose of 0.01-0.05 μg/cm(2) at pulsed flow, whereas no deposition was observed at constant flow. Exposure experiments with and without cells showed that the Cu particles were partly dissolved upon deposition on cells and in contact with medium.
CONCLUSIONS:
Different cellular doses were obtained for the different Cu particle sizes (generated with different methods). Furthermore, the cellular doses were affected by the flow conditions in the cell exposure system and the solubility of Cu. The cellular doses of Cu presented here are the amount of Cu that remained on the cells after completion of an experiment. As Cu particles were partly dissolved, Cu (a nonnegligible contribution) was, in addition, present and analyzed in the nourishing medium present beneath the cells. This study presents cellular doses induced by Cu particles and demonstrates difficulties with deposition of nanoparticles at the ALI and of partially soluble particles.

Human exposure, hazard and risk of alternative plasticizers to phthalate esters

| Sci. Total Environ. | 541 (451-467)

Identifying chemicals that are planetary boundary threats-

| Society of Environmental Toxicology and Chemistry (SETAC)

SETAC Europe, 25th Annual Meeting | September 19, 2019 | Barcelona, Spain

Intracellular Uptake and Toxicity of Ag and CuO Nanoparticles: A Comparison Between Nanoparticles and their Corresponding Metal Ions

| Small | 9 (7) (970-982)

Response and recovery of Baltic Sea blue mussels from exposure to pharmaceuticals

| Mar. Ecol. Prog. Ser. | 526 (89-100)
baltic sea , Disturbance recovery , Effluent gradient , Mytilus edulis trossulus , Physiology , pollutants , Pre-exposure

Aerosol transport over the Andes from the Amazon Basin to the remote Pacific Ocean: A multiyear CALIOP assessment

| J. Geophys. Res.-Atmos. | 120 (16) (8411-8425)

Six years (2007–2012) of data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite instrument were used to investigate the vertical distribution and transport of aerosols over the tropical South American continent and the southeast Pacific Ocean. The multiyear aerosol extinction assessment indicates that aerosols, mainly biomass burning particles emitted during the dry season in the Amazon Basin, are lifted in significant amounts over the Andes. The aerosols are mainly transported in the planetary boundary layer between the surface and 2 km altitude with an aerosol extinction maximum near the surface. During the transport toward the Andes, the aerosol extinction decreases at a rate of 0.02 km−1 per kilometer of altitude likely due to dilution and deposition processes. Aerosols reaching the top of the Andes, at altitudes typically between 4 and 5 km, are entrained into the free troposphere (FT) over the southeast Pacific Ocean. A comparison between CALIOP observations and ERA-Interim reanalysis data indicates that during their long-range transport over the tropical Pacific Ocean, these aerosols are slowly transported toward the marine boundary layer by the large-scale subsidence at a rate of 0.4 cm s−1. The observed vertical/horizontal transport ratio is 0.7–0.8 m km−1. Continental aerosols linked to transport over the Andes can be traced on average over 4000 km away from the continent indicating an aerosol residence time of 8–9 days in the FT over the Pacific Ocean. The FT aerosol optical depth (AOD) above the Pacific Ocean near South American coast accounts on average for 6% and 25% of the total AOD during the season of low and high biomass burning, respectively. This result shows that, during the biomass burning season, continental aerosols largely influence the AOD over the remote southeast Pacific Ocean. Overall, FT AOD decrease exponentially with the distance to continental sources at a rate of about 10% per degree of longitude over the Pacific Ocean.

Effect of sonication and serum proteins on copper release from copper nanoparticles and the toxicity towards lung epithelial cells

| Nanotoxicology | 5 (2) (269-281)
nanomedicine , nanoparticles , nanotoxicology , particle toxicology

Different methodological settings can influence particle characteristics and toxicity in nanotoxicology. The aim of this study was to investigate how serum proteins and sonication of Cu nanoparticle suspensions influence the properties of the nanoparticles and toxicological responses on human lung epithelial cells. This was investigated by using methods for particle characterization (photon correlation spectroscopy and TEM) and Cu release (atomic absorption spectroscopy) in combination with assays for analyzing cell toxicity (MTT-, trypan blue- and Comet assay). The results showed that sonication of Cu nanoparticles caused decreased cell viability and increased Cu release compared to non-sonicated particles. Furthermore, serum in the cell medium resulted in less particle agglomeration and increased Cu release compared with medium without serum, but no clear difference in toxicity was detected. Few cells showed intracellular Cu nanoparticles due to fast release/dissolution processes of Cu. In conclusion; sonication can affect the toxicity of nanoparticles.

Comparative Hazard and Exposure Assessment of Perfluoroalkyl Phosphonic and Phosphinic Acids (PFPAs and PFPiAs): Are They Overlooked Emerging Contaminants?

| Society of Environmental Toxicology and Chemistry (SETAC)

SETAC Europe, 25th Annual Meeting | September 19, 2019 | Barcelona, Spain

Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability

| Proc. Natl. Acad. Sci. U.S.A. | Early Edition
aerosol radiative forcing , cloud−aerosol interactions , constraints factors

A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing.

14th congress of combustion by-products and their health effects—origin, fate, and health effects of combustion-related air pollutants in the coming era of bio-based energy sources

| Environ Sci Pollut Res | Online (1-19)
Congress paper , human health , particles , Polychlorinated dibenzo-p-dioxins , Polychlorinated dibenzofurans , Products of incomplete combustion , soot

The 14th International Congress on Combustion By-Products and Their Health Effects was held in Umeå, Sweden from June 14th to 17th, 2015. The Congress, mainly sponsored by the National Institute of Environmental Health Sciences Superfund Research Program and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, focused on the “Origin, fate and health effects of combustion-related air pollutants in the coming era of bio-based energy sources”. The international delegates included academic and government researchers, engineers, scientists, policymakers and representatives of industrial partners. The Congress provided a unique forum for the discussion of scientific advances in this research area since it addressed in combination the health-related issues and the environmental implications of combustion by-products. The scientific outcomes of the Congress included the consensus opinions that: (a) there is a correlation between human exposure to particulate matter and increased cardiac and respiratory morbidity and mortality; (b) because currently available data does not support the assessment of differences in health outcomes between biomass smoke and other particulates in outdoor air, the potential human health and environmental impacts of emerging air-pollution sources must be addressed. Assessment will require the development of new approaches to characterize combustion emissions through advanced sampling and analytical methods. The Congress also concluded the need for better and more sustainable e-waste management and improved policies, usage and disposal methods for materials containing flame retardants.

A Review of More than 20 Years of Aerosol Observation at the High Altitude Research Station Jungfraujoch, Switzerland (3580 m asl)

| Aerosol Air Qual. Res. | 16 (3) (764-788)
Aerosol chemical properties , aerosol optical-properties , Aerosol physical properties , aerosol-cloud interactions , Mountain site

Among the worldwide existing long-term aerosol monitoring sites, the Jungfraujoch (JFJ) belongs to the category where both free tropospheric (FT) conditions and influence from planetary boundary layer (PBL) injections can be observed. Thus, it is possible to characterize free tropospheric aerosol as well as the effects of vertical transport of more polluted air from the PBL. This paper summarizes the current knowledge of the key properties for the JFJ aerosol, gained from the large number of in-situ studies from more than 20 years of aerosol measurements at the site. This includes physical, chemical and optical aerosol properties as well as aerosol-cloud interactions and cloud characteristics. It is illustrated that the aerosol size distribution and the aerosol chemical composition are fairly constant in time due to the long distance from aerosol sources, and that many climate relevant aerosol properties can be derived due to this behavior.

XRF measurements of tin, copper and zinc in antifouling paints coated on leisure boats

| Environ. Pollut. | 213 (594-599)
antifouling paints , copper , metals , TBT , XR , Zinc

Tributyltin (TBT) and other organotin compounds have been restricted for use on leisure boats since 1989 in the EU. Nonetheless, release of TBT is observed from leisure boats during hull maintenance work, such as pressure hosing. In this work, we used a handheld X-ray Fluorescence analyser (XRF) calibrated for antifouling paint matrixes to measure tin, copper and zinc in antifouling paints coated on leisure boats in Sweden. Our results show that over 10% of the leisure boats (n = 686) contain >400 μg/cm2 of tin in their antifouling coatings. For comparison, one layer (40 μm dry film) of a TBT-paint equals ≈ 800 μg Sn/cm2. To our knowledge, tin has never been used in other forms than organotin (OT) in antifouling paints. Thus, even though the XRF analysis does not provide any information on the speciation of tin, the high concentrations indicate that these leisure boats still have OT coatings present on their hull. On several leisure boats we performed additional XRF measurements by progressively scraping off the top coatings and analysing each underlying layer. The XRF data show that when tin is detected, it is most likely present in coatings close to the hull with several layers of other coatings on top. Thus, leaching of OT compounds from the hull into the water is presumed to be negligible. The risk for environmental impacts arises during maintenance work such as scraping, blasting and high pressure hosing activities. The data also show that many boat owners apply excessive paint layers when following paint manufacturers recommendations. Moreover, high loads of copper were detected even on boats sailing in freshwater, despite the more than 20 year old ban, which poses an environmental risk that has not been addressed until now.

Contact information

Visiting addresses:

Geovetenskapens Hus,
Svante Arrhenius väg 8, Stockholm

Arrheniuslaboratoriet, Svante Arrhenius väg 16, Stockholm (Unit for Analytical and Toxicological Chemistry)

Mailing address:
Department of Environmental Science and Analytical Chemistry (ACES)
Stockholm University
106 91 Stockholm

Press enquiries should be directed to:

Stella Papadopoulou
Science Communicator
Phone +46 (0)8 674 70 11
stella.papadopoulou@aces.su.se