Biodegradation potential of aquaculture chemotherapeutants in marine sediments
The commercial chemotherapeutant formulations SLICE® and AlphaMax® [active ingredients emamectin benzoate (EB) and deltamethrin respectively] are used in fin fish aquaculture to control parasitic sea lice. In some regions, the use of these substances has drawn concern from the commercial fishing industry regarding potential adverse effects on non-target organisms. In the present work, biodegradation of EB and deltamethrin, and their commercial formulations, was investigated over 135 days at 4 and 10°C in fresh marine sediments collected from underneath an active open net-pen salmon farm. EB incubated as either pure substance or commercial formulation was recalcitrant at both temperatures under abiotic and biotic conditions. Deltamethrin incubated alone or as its commercial formulation degraded slowly at 10°C (t1/2 = 330 ± 107 and 201 ± 27.1 days respectively). At 4°C, deltamethrin degradation was only significant following incubation as commercial formulation (t1/2 = 285 ±112 days). Degradation rates of EB and deltamethrin as pure substances versus their commercial formulations were not statistically different. Depletion of deltamethrin was observed in 10°C inactive sediments indicating that transformation occurred (at least in part) via an abiotic pathway. Overall, these data provide further insight into the fate and persistence of EB from the ongoing use of SLICE® in British Columbia's salmon aquaculture industry. AlphaMax® is not registered in Canada but is used in other salmon farming countries to control sea lice.
Changes in urine metabolites following a single oral dose of selenomethionine, methylmercury, or their combination in juvenile white sturgeon.
Fingerprinting Contaminant Exposure Using Metabolomic Response in Zebrafish Embryos
Characterizing metabolomic responses of zebrafish following exposure to ethinyl estradiol and Bisphenol A.
Variation in systems toxicology
Sorption of Per- and Polyfluoroalkyl Substances (PFASs) on Filter Media: Implications for Phase Partitioning Studies
Distinctive metabolite profiles in in-migrating Sockeye salmon suggest sex-linked endocrine perturbation
The health of Skeena River Sockeye salmon (Onchorhychus nerka) has been of increasing concern due to declining stock returns over the past decade. In the present work, in-migrating Sockeye from the 2008 run were evaluated using a mass spectrometry-based, targeted metabolomics platform. Our objectives were to (a) investigate natural changes in a subset of the hepatic metabolome arising from migration-associated changes in osmoregulation, locomotion, and gametogenesis, and (b) compare the resultant profiles with animals displaying altered hepatic vitellogenin A (vtg) expression at the spawning grounds, which was previously hypothesized as a marker of xenobiotic exposure. Of 203 metabolites monitored, 95 were consistently observed in Sockeye salmon livers and over half of these changed significantly during in-migration. Among the most dramatic changes in both sexes were a decrease in concentrations of taurine (a major organic osmolyte), carnitine (involved in fatty acid transport), and two major polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid). In females, an increase in amino acids was attributed to protein catabolism associated with vitellogenesis. Animals with atypical vtg mRNA expression demonstrated unusual hepatic amino acid, fatty acid, taurine, and carnitine profiles. The cause of these molecular perturbations remains unclear, but may include xenobiotic exposure, natural senescence, and/or interindividual variability. These data provide a benchmark for further investigation into the long-term health of migrating Skeena Sockeye.