Determination of the long-range atmospheric transport potential of perfluoroalkyl acids associated with sea spray aerosols

2016 | Organohalogen Compd. | 78 (233-236)

Beware the impact factor

2016 | Ambio | 45 (513-515)

Implementing systematic review techniques in chemical risk assessment: Challenges, opportunities and recommendations

Paul Whaley; Crispin Halsall; Marlene Ågerstrand; Elisa Aiassa; Diane Benford; Gary Bilotta; David Coggon; Chris Collins; Ciara Dempsey; Raquel Duarte-Davidson; Rex FitzGerald; Malyka Galay-Burgos; David Gee; Sebastian Hoffmann; Juleen Lam; Toby Lasserson; Len Levy; Steven Lipworth; Sarah Mackenzie Ross; Olwenn Martin; Catherine Meads; Monika Meyer-Baron; James Miller; Camilla Pease; Andrew Rooney; Alison Sapiets; Gavin Stewart; David Taylor
2016 | Environ Int | 92 (556-564)

Systematic review (SR) is a rigorous, protocol-driven approach designed to minimise error and bias when summarising the body of research evidence relevant to a specific scientific question. Taking as a comparator the use of SR in synthesising research in healthcare, we argue that SR methods could also pave the way for a “step change” in the transparency, objectivity and communication of chemical risk assessments (CRA) in Europe and elsewhere. We suggest that current controversies around the safety of certain chemicals are partly due to limitations in current CRA procedures which have contributed to ambiguity about the health risks posed by these substances. We present an overview of how SR methods can be applied to the assessment of risks from chemicals, and indicate how challenges in adapting SR methods from healthcare research to the CRA context might be overcome. Regarding the latter, we report the outcomes from a workshop exploring how to increase uptake of SR methods, attended by experts representing a wide range of fields related to chemical toxicology, risk analysis and SR. Priorities which were identified include: the conduct of CRA-focused prototype SRs; the development of a recognised standard of reporting and conduct for SRs in toxicology and CRA; and establishing a network to facilitate research, communication and training in SR methods. We see this paper as a milestone in the creation of a research climate that fosters communication between experts in CRA and SR and facilitates wider uptake of SR methods into CRA.

Weight of Evidence evaluation and Systematic Review in EU chemical risk assessment: Foundation is laid but guidance is needed

Marlene Ågerstrand; Anna Beronius
2016 | Environ Int | 92 (590-596)

The aim of this review was to investigate if and how the application of weight of evidence (WoE) evaluation or systematic review (SR) in chemical risk assessment is promoted within different regulatory frameworks in the European Union. Legislative and relevant guidance documents within nine regulatory frameworks were scrutinized and compared. WoE evaluation or SR is promoted in seven of the investigated frameworks but sufficient guidance for how to perform these processes is generally lacking. None of the investigated frameworks give enough guidance for generating robust and reproducible WoE evaluations or SRs. In conclusion, the foundation for use of WoE evaluation and SR is laid in the majority of the investigated frameworks, but there is a need to provide more structured and detailed guidance. In order to make the process of developing guidance as efficient as possible, and to ensure smooth transfer of risk assessment's between frameworks if a chemical is risk assessed both as, for example, a biocide and an industrial chemical, it is recommended that guidance is developed jointly by the European regulatory agencies.

Study sensitivity: Evaluating the ability to detect effects in systematic reviews of chemical exposures

Glinda S Cooper; Ruth M Lunn; Marlene Ågerstrand; Barbara S Glenn; Andrew D Kraft; April M Luke; Jennifer M Ratcliffe
2016 | Environ Int | 92 (605-610)

A critical step in systematic reviews of potential health hazards is the structured evaluation of the strengths and weaknesses of the included studies; risk of bias is a term often used to represent this process, specifically with respect to the evaluation of systematic errors that can lead to inaccurate (biased) results (i.e. focusing on internal validity). Systematic review methods developed in the clinical medicine arena have been adapted for use in evaluating environmental health hazards; this expansion raises questions about the scope of risk of bias tools and the extent to which they capture the elements that can affect the interpretation of results from environmental and occupational epidemiology studies and in vivo animal toxicology studies, (the studies typically available for assessment of risk of chemicals). One such element, described here as “sensitivity”, is a measure of the ability of a study to detect a true effect or hazard. This concept is similar to the concept of the sensitivity of an assay; an insensitive study may fail to show a difference that truly exists, leading to a false conclusion of no effect. Factors relating to study sensitivity should be evaluated in a systematic manner with the same rigor as the evaluation of other elements within a risk of bias framework. We discuss the importance of this component for the interpretation of individual studies, examine approaches proposed or in use to address it, and describe how it relates to other evaluation components. The evaluation domains contained within a risk of bias tool can include, or can be modified to include, some features relating to study sensitivity; the explicit inclusion of these sensitivity criteria with the same rigor and at the same stage of study evaluation as other bias-related criteria can improve the evaluation process. In some cases, these and other features may be better addressed through a separate sensitivity domain. The combined evaluation of risk of bias and sensitivity can be used to identify the most informative studies, to evaluate the confidence of the findings from individual studies and to identify those study elements that may help to explain heterogeneity across the body of literature.

Permafrost Sub-grid Heterogeneity of Soil Properties Key for 3-D Soil Processes and Future Climate Projections

2016 | Front. Earth Sci | 4:81

There are massive carbon stocks stored in permafrost-affected soils due to the 3-D soil movement process called cryoturbation. For a reliable projection of the past, recent and future Arctic carbon balance, and hence climate, a reliable concept for representing cryoturbation in a land surface model (LSM) is required. The basis of the underlying transport processes is pedon-scale heterogeneity of soil hydrological and thermal properties as well as insulating layers, such as snow and vegetation. Today we still lack a concept of how to reliably represent pedon-scale properties and processes in a LSM. One possibility could be a statistical approach. This perspective paper demonstrates the importance of sub-grid heterogeneity in permafrost soils as a pre-requisite to implement any lateral transport parametrization. Representing such heterogeneity at the sub-pixel size of a LSM is the next logical step of model advancements. As a result of a theoretical experiment, heterogeneity of thermal and hydrological soil properties alone lead to a remarkable initial sub-grid range of subsoil temperature of 2°C, and active-layer thickness of 150 cm in East Siberia. These results show the way forward in representing combined lateral and vertical transport of water and soil in LSMs.

Ubiquity and impact of thin mid-level clouds in the tropics

Bourgeois, Q.; Ekman A.M.L.; Igel M.R.; Krejci, R.
2016 | Nat. Commun. | 7

Clouds are crucial for Earth’s climate and radiation budget. Great attention has been paid to low, high and vertically thick tropospheric clouds such as stratus, cirrus and deep convective clouds. However, much less is known about tropospheric mid-level clouds as these clouds are challenging to observe in situ and difficult to detect by remote sensing techniques. Here we use Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite observations to show that thin mid-level clouds (TMLCs) are ubiquitous in the tropics. Supported by high-resolution regional model simulations, we find that TMLCs are formed by detrainment from convective clouds near the zero-degree isotherm. Calculations using a radiative transfer model indicate that tropical TMLCs have a cooling effect on climate that could be as large in magnitude as the warming effect of cirrus. We conclude that more effort has to be made to understand TMLCs, as their influence on cloud feedbacks, heat and moisture transport, and climate sensitivity could be substantial.

Earliest land plants created modern levels of atmospheric oxygen

T. M. Lenton; T. W. Dahl; S. J. Daines; B. J. W. Mills; K. Ozaki; M. R. Saltzman; P. Porada
2016 | Proc. Natl. Acad. Sci. U.S.A. | 113 (35) (9704-9709)

The progressive oxygenation of the Earth’s atmosphere was pivotal to the evolution of life, but the puzzle of when and how atmospheric oxygen (O2) first approached modern levels (∼21%) remains unresolved. Redox proxy data indicate the deep oceans were oxygenated during 435–392 Ma, and the appearance of fossil charcoal indicates O2 >15–17% by 420–400 Ma. However, existing models have failed to predict oxygenation at this time. Here we show that the earliest plants, which colonized the land surface from ∼470 Ma onward, were responsible for this mid-Paleozoic oxygenation event, through greatly increasing global organic carbon burial—the net long-term source of O2. We use a trait-based ecophysiological model to predict that cryptogamic vegetation cover could have achieved ∼30% of today’s global terrestrial net primary productivity by ∼445 Ma. Data from modern bryophytes suggests this plentiful early plant material had a much higher molar C:P ratio (∼2,000) than marine biomass (∼100), such that a given weathering flux of phosphorus could support more organic carbon burial. Furthermore, recent experiments suggest that early plants selectively increased the flux of phosphorus (relative to alkalinity) weathered from rocks. Combining these effects in a model of long-term biogeochemical cycling, we reproduce a sustained +2‰ increase in the carbonate carbon isotope (δ13C) record by ∼445 Ma, and predict a corresponding rise in O2 to present levels by 420–400 Ma, consistent with geochemical data. This oxygen rise represents a permanent shift in regulatory regime to one where fire-mediated negative feedbacks stabilize high O2 levels.

Simultaneous determination of 20 trace organic chemicals in waters by solid-phase extraction (SPE) with triple-quadrupole mass spectrometer (QqQ-MS) and hybrid quadrupole Orbitrap high resolution MS (Q-Orbitrap-HRMS)

Wei Chen; Huanfang Huang; Chang-Er Chen; Shihua Qi; Oliver R Price; Hao Zhang; Kevin C Jones; Andrew J Sweetman
2016 | Chemosphere | 163 (99-107)

A sensitive method for simultaneous determination of 20 trace organic chemicals (TOrCs, including preservatives, antioxidants, disinfectants, oestrogens, alkyl-phenols and bisphenol-A) in surface water and wastewater has been developed and validated based on the optimisation of solid-phase extraction (SPE) followed by liquid chromatography-mass spectrometry (LC-MS) analysis. 500 mL acidified (pH = 2.5) water samples were pre-concentrated by Supel-Select HLB cartridge (200 mg, 6 mL) and eluted with 12 mL mixture of acetonitrile and ethyl acetate (50:50, v/v). This optimised SPE procedure could provide >75% recoveries for the majority of TOrCs. The instrumental methods were developed using two different LC-MS systems: a triple-quadrupole MS (QqQ-MS) and a hybrid quadrupole Orbitrap high resolution MS (Q-Orbitrap-HRMS). Both showed good performance data, but the former system provided better linearity and method precision, with the latter system providing 2–33 times lower detection limits. Different matrix effects were observed for both systems: No remarkable matrix effects were observed for Q-Orbitrap-HRMS but significant matrix effects were found in influent and river water samples for the QqQ-MS. This analytical method was subsequently employed to analyse the TOrCs in river waters and wastewaters from China successfully, which confirmed its applicability to environmental samples.

LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles – Part 2: First results from balloon and unmanned aerial vehicle flights

J.-B. Renard; F. Dulac; G. Berthet; T. Lurton; D. Vignelles; F. Jégou; T. Tonnelier; M. Jeannot; B. Couté; R. Akiki; N. Verdier; M. Mallet; F. Gensdarmes; P. Charpentier; S. Mesmin; V. Duverger; J.-C. Dupont; T. Elias; V. Crenn; J. Sciare; P. Zieger; M. Salter; T. Roberts; J. Giacomoni; M. Gobbi; E. Hamonou; H. Olafsson; P. Dagsson-Waldhauserova; C. Camy-Peyret; C. Mazel; T. Décamps; M. Piringer; J. Surcin; and D. Daugeron
2016 | Atmos. Meas. Tech. | 9 (3673-3686)

In the companion (Part I) paper, we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter), based on scattering measurements at angles of 12 and 60°. That allows for some typology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size-segregated counting in a large diameter range from 0.2 µm up to possibly more than 100 µm depending on sampling conditions (Renard et al., 2016). Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10–20 µm in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAVs) and at ground level. We illustrate here the first LOAC airborne results obtained from a UAV and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment – ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon

Semiletov, Igor; Pipko, Irina; Gustafsson, Örjan; Anderson, Leif G; Sergienko, Valentin; Pugach, Svetlana; Dudarev, Oleg; Charkin, Alexander; Gukov, Alexander; Bröder, Lisa; Andersson, August; Spivak, Eduard; Shakhova, Natalia
2016 | Nat. Geosci. | 9 (5) (361-365)

How we can make ecotoxicology more valuable to environmental protection

ML Hanson; BA Wolff; JW Green; M Kivi; GH Panter; M St J Warne; M Ågerstrand; JP Sumpter
2016 | Sci. Total Environ.

There is increasing awareness that the value of peer-reviewed scientific literature is not consistent, resulting in a growing desire to improve the practice and reporting of studies. This is especially important in the field of ecotoxicology, where regulatory decisions can be partly based on data from the peer-reviewed literature, with wide-reaching implications for environmental protection. Our objective is to improve the reporting of ecotoxicology studies so that they can be appropriately utilized in a fair and transparent fashion, based on their reliability and relevance. We propose a series of nine reporting requirements, followed by a set of recommendations for adoption by the ecotoxicology community. These reporting requirements will provide clarity on the the test chemical, experimental design and conditions, chemical identification, test organisms, exposure confirmation, measurable endpoints, how data are presented, data availability and statistical analysis. Providing these specific details will allow for a fuller assessment of the reliability and relevance of the studies, including limitations. Recommendations for the implementation of these reporting requirements are provided herein for practitioners, journals, reviewers, regulators, stakeholders, funders, and professional societies. If applied, our recommendations will improve the quality of ecotoxicology studies and their value to environmental protection.

Contact information

Visiting addresses:

Geovetenskapens Hus,
Svante Arrhenius väg 8, Stockholm

Arrheniuslaboratoriet, Svante Arrhenius väg 16, Stockholm (Unit for Analytical and Toxicological Chemistry)

Mailing address:
Department of Environmental Science and Analytical Chemistry (ACES)
Stockholm University
106 91 Stockholm

Press enquiries should be directed to:

Stella Papadopoulou
Science Communicator
Phone +46 (0)8 674 70 11