Perfluoroalkyl Substances in the Western Tropical Atlantic Ocean

Miranda, DD; Leonel, J; Benskin, JP; Johansson, J; Hatje, V
2021 | Environ. Sci. Technol. | 55 (20) (13749-13758)
cabo frio , deep-water , geotraces , labrador sea , perfluorinated acids , perfluorooctanoic acid (pfoa) , pfaas , polyfluoroalkyl substances , pops , south-atlantic , sulfluramid use , surface water , tropical atlantic ocean , upwelling , upwelling system
The dispersion of perfluoroalkyl substances (PFAS) in surface and deep-water profiles (down to 5845 m deep) was evaluated through the Western Tropical Atlantic Ocean (TAO) between 15 degrees N and 23 degrees S. The sum concentrations for eight quantifiable PFAS (Sigma(8)PFAS) in surface waters ranged from 11 to 69 pg/L, which is lower than previously reported in the same area as well as in higher latitudes. Perfluoroalkyl carboxylic acids (PFCAs) were the predominant PFASs present in the Western TAO. The 16 surface samples showed variable PFAS distributions, with the predominance of perfluorooctanoic acid (PFOA) along the transect (67%; 11 +/- 8 pg/L) and detection of perfluoroalkyl sulfonic acids (PFSAs) only in the Southern TAO. Perfluoroheptanoic acid (PFHpA) was often detected in the vertical profiles. PFAS distribution patterns (i.e., profiles and concentrations) varied with depth throughout the TAO latitudinal sectors (North, Equator, South Atlantic, and in the Brazilian coastal zone). Vertical profiles in coastal samples displayed decreasing PFAS concentrations with increasing depth, whereas offshore samples displayed higher PFAS detection frequencies in the intermediate water masses. Together with the surface currents and coastal upwelling, the origin of the water masses was an important factor in explaining PFAS concentrations and profiles in the TAO.

High Concentrations of Unidentified Extractable Organofluorine Observed in Blubber from a Greenland Killer Whale (Orcinus orca)

Lara Schultes; Carmen van Noordenburg; Kyra M. Spaan; Merle M. Plassmann; Malene Simon; Anna Roos; Jonathan P. Benskin
2020 | Environ. Sci. Technol. Lett. | 7 (909-915)

It is generally accepted that per- and polyfluoroalkyl substances (PFASs) occur primarily in protein-rich tissues such as blood and liver, but few studies have examined the occurrence of legacy and novel PFASs in lipid-rich tissues such as blubber. Here we report the distribution of 24 PFASs, total fluorine, and extractable organic fluorine (EOF) in eight different tissues of a killer whale (Orcinus orca) from East Greenland. The sum of target PFAS concentrations was highest in liver (352 ng/g of wet weight) and decreased in the following order: blood > kidney ≈ lung ≈ ovary > skin ≈ muscle ≈ blubber. Most of the EOF consisted of known PFASs in all tissues except blubber, which displayed the highest concentration of EOF, almost none of which was attributed to targeted PFASs. Suspect screening using high-resolution mass spectrometry revealed the presence of additional PFASs but is unlikely to explain the high concentrations of EOF in blubber. While the identity of this unknown organofluorine and its pervasiveness in marine mammals require further investigation, this work suggests that exposure of killer whales to organofluorine substances may be underestimated by determination of legacy PFASs exclusively in liver or blood.

Spatio-temporal variation of metals and organic contaminants in bank voles (Myodes glareolus)

Ecke, F.; Benskin, J.P.; Berglund, Å.M.M.; de Wit, C.A.; Engström, E.; Faxneld, S.; Plassmann, M.M.; Rodushkin, I.; Sörlin, D.; Hörnfeldt, B.
2020 | Sci. Total Environ. | 713 (136353-136353)

Bacterial diversity controls transformation of wastewater-derived organic contaminants in river-simulating flumes

Posselt, M.; Mechelke, J.; Rutere, C.; Coll, C.; Jaeger, A.; Raza, M.; Meinikmann, K.; Krause, S.; Sobek, A.; Lewandowski, J.; Horn, M.A.; Hollender, J.; Benskin, J.P.
2020 | Environ. Sci. Technol.

Fluorine Mass Balance and Suspect Screening in Marine Mammals from the Northern Hemisphere

K.M. Spaan; C. van Noordenburg; M.M. Plassmann; L. Schultes; S. Shaw; M. Berger; M.P. Heide-Jørgensen; A. Rosing-Asvid; S.M. Granquist; R. Dietz; C. Sonne; F. Rigét; A. Roos; J.P. Benskin
2020 | Environ. Sci. Technol. | 54 (7) (4046-4058)

There is increasing evidence that the ~20 routinely monitored per- and polyfluoroalkyl substances (PFASs) account for only a fraction of extractable organofluorine (EOF) occurring in the environment. To assess whether PFAS exposure is being underestimated in marine mammals from the Northern Hemisphere, we performed a fluorine mass balance on liver tissues from 11 different species using a combination of targeted PFAS analysis, EOF and total fluorine determination, and suspect screening. Samples were obtained from the east coast United States (US), west and east coast of Greenland, Iceland, and Sweden from 2000-2017. Of the 36 target PFASs, perfluorooctane sulfonate (PFOS) dominated in all but one Icelandic and three US samples, where the 7:3 fluorotelomer carboxylic acid (7:3 FTCA) was prevalent. This is the first report of 7:3 FTCA in polar bears (~1000 ng/g, ww) and cetaceans (<6-190 ng/g, ww). In 18 out of 25 samples, EOF was not significantly greater than fluorine concentrations derived from sum target PFASs. For the remaining 7 samples (mostly from the US east coast), 30-75% of the EOF was unidentified. Suspect screening revealed an additional 33 PFASs (not included in the targeted analysis) bringing the total to 59 detected PFASs from 12 different classes. Overall, these results highlight the importance of a multi-platform approach for accurately characterizing PFAS exposure in marine mammals.

Temporal trends of suspect- and target-per/polyfluoroalkyl substances (PFAS), extractable organic fluorine (EOF) and total fluorine (TF) in pooled serum from first-time mothers in Uppsala, Sweden, 1996-2017

Miaz, LT; Plassmann, MM; Gyllenhammar, I; Bignert, A; Sandblom, O; Lignell, S; Glynn, A; Benskin, JP
2020 | Environ. Sci.: Processes Impacts | 22 (4) (1071-1083)

A combined method for quantitative analysis, along with suspect and non-target screening of per- and polyfluoroalkyl substances (PFAS) was developed using ultra-high pressure liquid chromatography-ultra-high resolution (Orbitrap) mass spectrometry. The method was applied together with measurements of total- and extractable organofluorine (TF and EOF, respectively), to pooled serum samples from 1996-2017 from first-time mothers living in the county of Uppsala, Sweden, some of which (i.e.148 of 472 women sampled 1996-2012) were exposed to drinking water contaminated with perfluorohexane sulfonate (PFHxS) and other PFAS until mid-2012. Declining trends were observed for all target PFAS as well as TF, with homologue-dependent differences in year of onset of decline. Only 33% of samples displayed detectable EOF, and amongst these samples the percentage of EOF explained by target PFAS declined significantly (-3.5% per year) over the entire study period. This finding corroborates prior observations in Germany after the year 2000, and may reflect increasing exposure to novel PFAS which have not yet been identified. Suspect screening revealed the presence of perfluoro-4-ethylcyclohexanesulfonate (PFECHS), which displayed declining trends since the year 2000. Non-target time trend screening revealed 3 unidentified features with time trends matching PFHxS. These features require further investigation, but may represent contaminants which co-occurred with PFHxS in the contaminated drinking water.

Release of side-chain fluorinated polymer-containing microplastic fibers from functional textiles during washing and first estimates of perfluoroalkyl acid emissions

Schellenberger, S.; Jonsson, C.; Mellin, P.; Levenstam, O.; Liagkouridis, I.; Ribbenstedt, A.; Hanning, A.-C.; Schultes, L.; Plassmann, M.M.; Persson, C.; Cousins, I.T.; Benskin, J.P.
2019 | Environ. Sci. Technol. | 53 (24) (14329-14338)

Themed issues on per- and polyfluoroalkyl substances

Ahrens, L.; Benskin, J.P.; Cousins, I.T.; Crimi, M.; Higgins, C.P.
2019 | Environ. Sci.-Process Impacts | 21 (1797-1802)

Fluorine Mass Balance in Marine Mammals from the Northern Hemisphere – A combination of targeted, total (organo)fluorine, and non-targeted analysis

Kyra M. Spaan; Carmen van Noordenburg; Merle M. Plassmann; Lara Schultes; Susan Shaw; Michelle Berger; Mads Peter Heide-Jørgensen; Aqqalu Rosing-Asvid; Sandra M. Granquist; Rune Dietz; Christian Sonne; Frank Rigét; Anna Roos; Jonathan P. Benskin
2019 | Society of Environmental Toxicology and Chemistry (SETAC)

Society of Environmental Toxicology and Chemistry | November 4, 2019 | Toronto, Canada

There is increasing evidence that the ~20 routinely monitored per- and polyfluoroalkyl substances (PFASs) account for only a fraction of extractable organofluorine (EOF) occurring in the environment. To assess whether PFAS exposure is being underestimated in marine mammals from the Northern Hemisphere, we performed a fluorine mass balance on liver tissues from 11 different species using a combination of targeted PFAS analysis, EOF and total fluorine determination, and suspect screening. Samples were obtained from the east coast United States (US), west and east coast of Greenland, Iceland, and Sweden from 2000-2017. Of the 36 target PFASs, perfluorooctane sulfonate (PFOS) dominated in all but one Icelandic and three US samples, where the 7:3 fluorotelomer carboxylic acid (7:3 FTCA) was prevalent. This is the first report of 7:3 FTCA in polar bears (~1000 ng/g, ww) and cetaceans (<6-190 ng/g, ww). In 18 out of 25 samples, EOF was not significantly greater than fluorine concentrations derived from sum target PFASs. For the remaining 7 samples (mostly from the US east coast), 30-75% of the EOF was unidentified. Suspect screening revealed an additional 33 PFASs (not included in the targeted analysis) bringing the total to 59 detected PFASs from 12 different classes. Overall, these results highlight the importance of a multi-platform approach for accurately characterizing PFAS exposure in marine mammals.

Themed issues on per- and polyfluoroalkyl substances

Ahrens, L.; Benskin, J.P.; Cousins, I.T.; Crimi, M.; Higgins, C.P.
2019 | Environ. Sci. Water Res. Technol. | 5 (1808-1813)

Using recirculating flumes and a response surface model to investigate the role of hyporheic exchange and bacterial diversity on micropollutant half-lives

Jaeger, A.; Coll, C.; Posselt, M.; Mechelke, J.; Rutere, C.; Betterle, A.; Raza, M.; Mehrtens, A.; Meinikmann, K.; Portman, A.; Singh, T.; Blaen, P.J.; Krause, S.; Horn, M.A.; Hollender, J.; Benskin, J.P.; Sobek, A.; Lewandowski, J.
2019 | Environ. Sci.-Process Impacts | 21 (2093-2108)

Total Fluorine Measurements in Food Packaging: How Do Current Methods Perform?

Lara Schultes; Graham F. Peaslee; John D. Brockman; Ashabari Majumdar; Sean R. McGuinness; John T. Wilkinson; Oskar Sandblom; Ruth A. Ngwenyama; Jonathan P. Benskin
2019 | Environ. Sci. Technol. Lett.

Per- and polyfluoroalkyl substances (PFASs) represent a class of more than 4000 compounds. Their large number and structural diversity pose a considerable challenge to analytical chemists. Measurement of total fluorine in environmental samples and consumer products is therefore critical for rapidly screening for PFASs and for assessing the fraction of unexplained fluorine(i.e., fluorine mass balance). Here we compare three emerging analytical techniques for total fluorine determination: combustion ion chromatography (CIC), particle-induced γ-ray emission spectroscopy (PIGE), and instrumental neutron activation analysis (INAA). Application of each method to a certified reference material (CRM), spiked filters, and representative food packaging samples revealed good accuracy and precision. INAA and PIGE had the advantage of being nondestructive, while CIC displayed the lowest detection limits. Inconsistencies between the methods arose due to the high aluminum content in the CRM, which precluded its analysis by INAA, and sample heterogeneity (i.e., coating on the surface of the material), which resulted in higher values from the surface measurement technique PIGE compared to the values from the bulk volume techniques INAA and CIC. Comparing CIC-based extractable organic fluorine to target PFAS measurements of food packaging samples by liquid chromatography–tandem mass spectrometry revealed large amounts of unidentified organic fluorine not captured by compound-specific analysis.

Contact information

Visiting addresses:

Geovetenskapens Hus,
Svante Arrhenius väg 8, Stockholm

Arrheniuslaboratoriet, Svante Arrhenius väg 16, Stockholm (Unit for Toxicological Chemistry)

Mailing address:
Department of Environmental Science
Stockholm University
106 91 Stockholm

Press enquiries should be directed to:

Stella Papadopoulou
Science Communicator
Phone +46 (0)8 674 70 11
stella.papadopoulou@aces.su.se