Certain Perfluoroalkyl and Polyfluoroalkyl Substances Associated with Aqueous Film Forming Foam Are Widespread in Canadian Surface Waters

Lisa A. D'Agostino; Scott A. Mabury
2017 | Environ. Sci. Technol.

The presence of perfluoroalkyl and polyfluoroalkyl substances (PFASs) commonly associated with aqueous film forming foams (AFFFs) at sites without known AFFF contamination is a largely unexplored area, which may reveal widespread environmental contaminants requiring further investigation. Sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) screening for 23 classes of PFASs, followed by quantitative analysis was used to investigate surface waters from rural, urban, and AFFF-impacted sites in Canada. The PFASs detected included perfluorohexane sulfonamide (FHxSA), 6:2 fluorotelomer sulfonamide (FTSAm), fluorotelomer sulfonamide alkylbetaines (FTABs), fluorotelomer betaines (FTBs), 6:2 fluorotelomer mercaptoalkylamido sulfonate sulfone (FTSAS-SO2), 6:2 fluorotelomerthiohydroxyl ammonium sulfoxide (FTSHA-SO), 6:2 fluorotelomer sulfonamide alkylamine (FTAA) and C3 to C6 perfluoroalkane sulfonamido amphoterics. Detection of FHxSA in all urban and AFFF-impacted sites (0.04–19 ng/L) indicates the widespread presence of rarely considered perfluorohexane sulfonate (PFHxS) precursors in Canadian waters. FTABs and FTBs were especially abundant with up to 16–33 ng/L of 6:2 FTAB in urban and AFFF-impacted water suggesting it may have additional applications, while FTBs were only in AFFF-impacted sites (qualitative; ΣFTBs 80 ng/L). The distributions of PFASs moving downstream along the AFFF-impacted Welland River and between water and sediment suggested differences in the persistence of various AFFF components and enhanced sorption of long-chain fluorotelomer betaines. Total organofluorine combustion-ion chromatography (TOF-CIC) revealed that fluorotelomer betaines were a substantial portion of the organofluorine in some waters and 36–99.7% of the total organofluorine was not measured in the targeted analysis.

Aerobic biodegradation of 2 fluorotelomer sulfonamide–based aqueous film–forming foam components produces perfluoroalkyl carboxylates

Lisa A. D'Agostino; Scott A. Mabury
2017 | Environ. Toxicol. Chem. | 36 (8) (2012-2021)

The biodegradation of 2 common fluorotelomer surfactants used in aqueous film forming foams (AFFFs), 6:2 fluorotelomer sulfonamide alkylamine (FTAA) and 6:2 fluorotelomer sulfonamide alkylbetaine (FTAB), was investigated over 109 d with aerobic wastewater-treatment plant (WWTP) sludge. Results show that biodegradation of 6:2 FTAA and 6:2 FTAB produces 6:2 fluorotelomer alcohol (FTOH), 6:2 fluorotelomer carboxylic acid (FTCA), 6:2 fluorotelomer unsaturated carboxylic acid (FTUCA), 5:3 FTCA, and short-chain perfluoroalkyl carboxylates (PFCAs). Additional degradation products included 6:2 fluorotelomer sulfonamide (FTSAm), which was a major degradation product in the presence of either active or sterilized sludge, whereas 6:2 fluorotelomer sulfonate (FTSA) production was measured with sterilized sludge only. Six additional degradation products were tentatively identified by quadrupole time-of-flight mass spectrometry (qTOF-MS) and attributed to N-dealkylation and oxidation of 6:2 FTAA.

Organic fluorine content in aqueous film forming foams (AFFFs) and biodegradation of the foam component 6 : 2 fluorotelomermercaptoalkylamido sulfonate (6 : 2 FTSAS)

Barbara Weiner; Leo W. Y. Yeung; Erin B. Marchington; Lisa A. D'Agostino; Scott A. Mabury
2013 | Environ. Chem. | 10 (6) (486-493)

Identification of Novel Fluorinated Surfactants in Aqueous Film Forming Foams and Commercial Surfactant Concentrates

Lisa A. D'Agostino; Scott A. Mabury
2013 | Environ. Sci. Technol. | 48 (1) (121-129)

Recent studies comparing the results of total organofluorine-combustion ion chromatography (TOF-CIC) to targeted analysis of perfluoroalkyl and polyfluoroalkyl substances (PFASs) by liquid chromatography tandem mass spectrometry (LC-MS/MS) have shown that a significant yet variable portion of the total organofluorine in environmental and biological samples is in the form of unknown PFASs. A portion of this unknown organofluorine likely originates in proprietary fluorinated surfactants not included in LC-MS/MS analyses and not fully characterized by the environmental science community, which may enter the environment through use in aqueous film forming foams (AFFFs) for firefighting. Contamination of water, biota, and soils with various PFASs due to AFFF deployment has been documented. Ten fluorinated AFFF concentrates, 9 of which were obtained from fire sites in Ontario, Canada, and two commercial fluorinated surfactant concentrates were characterized in order to identify novel fluorinated surfactants. Mixed-mode ion exchange solid phase extraction (SPE) fractionated fluorinated surfactants based on ionic character. High resolution mass spectrometry assigned molecular formulas to fluorinated surfactant ions, while collision induced dissociation (CID) spectra assisted structural elucidation. LC-MS/MS detected isomers and low abundance fluorinated chain lengths. In total, 12 novel and 10 infrequently reported PFAS classes were identified in fluorinated chain lengths from C3 to C15 for a total of 103 compounds. Further research should examine the environmental fate and toxicology of these PFASs, especially their potential as perfluoroalkyl acid (PFAA) precursors.

Comprehensive Plasma Thiol Redox Status Determination for Metabolomics

Lisa A. D'Agostino; Karen P. Lam; Richard Lee; Philip Britz-McKibbin
2010 | J. Proteome Res. | 10 (2) (592-603)

Comparison of peak integration methods for the determination of enantiomeric fraction in environmental samples

Brian J. Asher; Lisa A. D'Agostino ; Jenilee D. Way; Charles S. Wong; James J. Harynuk
2009 | Chemosphere | 75 (8) (1042-1048)

Enantiomeric fractions (EFs) are used extensively in environmental pollutant research because of the insights on biochemical weathering available from quantifying enantiomeric composition. While this analysis is powerful, it can also be subject to significant error, depending on how chromatographic peaks are integrated. Two methods of integration, the common valley drop method (VDM) and the deconvolution method (DM) were compared using both instrumental and simulated chromatograms to assess their performance when integrating pairs of enantiomers. The effect of peak parameters such as true EF, peak resolution, signal-to-noise ratio, and asymmetry were also investigated. The VDM biased EFs by up to +6% to −4% (relative to the 0–1 EF scale) for symmetric peaks, and as low as −20% for asymmetric peaks. For both instrumental and simulated data, biases tended to increase with decreasing resolution and more extreme (nonracemic) EFs. In contrast, the DM produced biases that were less than 1% in most cases, including at very low resolutions. Estimates from previously published studies based on EF, such as biotransformation rate and source apportionment, could be dramatically affected by small errors in EF. Our results suggest that a deconvolution-based integration method is preferable for the handling of enantiomer compositions. Caution is also advised when comparing published studies on chiral environmental pollutants as most do not specify how chromatographic data is processed.

Contact information

Visiting addresses:

Geovetenskapens Hus,
Svante Arrhenius väg 8, Stockholm

Arrheniuslaboratoriet, Svante Arrhenius väg 16, Stockholm (Unit for Analytical and Toxicological Chemistry)

Mailing address:
Department of Environmental Science and Analytical Chemistry (ACES)
Stockholm University
106 91 Stockholm

Press enquiries should be directed to:

Stella Papadopoulou
Science Communicator
Phone +46 (0)8 674 70 11