A two-dimensional non-comprehensive reversed/normal phase high-performance liquid chromatography/tandem mass spectrometry system for determination of limonene and linalool hydroperoxides

Ahmed Ramzi; Hamid Ahmadi; Ioannis Sadiktsis; Ulrika Nilsson
2018 | J. Chromatogr. A | 1566 (102-110)

A two-dimensional non-comprehensive high-performance liquid chromatographic (HPLC) system coupled to electrospray ionization tandem mass spectrometry was developed for the determination of skin allergenic hydroperoxides of limonene and linalool. These compounds are some major components behind skin sensitization and contact (skin) allergy to fragrances.

Fragrance hydroperoxides usually occur in complex compositions, often as constituents of the natural essential oils added to a large number of commercial products. Their similarities to interfering compounds, many with identical elemental composition, make the determination difficult even when using selective detection methods like mass spectrometry. In this work, a first-dimension chromatographic heart-cut isolation of the hydroperoxides on a reversed-phase HPLC system was combined with a second-dimension normal-phase HPLC system for separation of the hydroperoxides. The intersystem transfer was made by trapping the heart-cut fraction on a short graphitized carbon column, exchanging the mobile phase and back-flushing the hydroperoxides into the second dimension.

Each analysis was performed within 60 min without any pretreatment, except dilution, prior to injection. The obtained instrumental limits of detection (LODs) at a signal-to-noise ratio of 3 were lower than 1.2 ng injected on column and method LODs were below 0.3 ppm. An after-shave product was shown to contain the highest concentrations of the measured hydroperoxides, with 445 ± 23 ppm of total linalool hydroperoxides. This level is likely able to elicit skin reactions in already sensitized individuals.

Time-resolved analysis of particle emissions from residential biomass combustion – Emissions of refractory black carbon, PAHs and organic tracers

Ingeborg E. Nielsen; Axel C. Eriksson; Robert Lindgren; Johan Martinsson; Robin Nyström; Erik Z. Nordin; Ioannis Sadiktsis; Christoffer Boman; Jacob K. Nøjgaard; Joakim Pagels
2017 | Atmos Environ | 165 (179-190)

Time-resolved particle emissions from a conventional wood stove were investigated with aerosol mass spectrometry to provide links between combustion conditions, emission factors, mixing state of refractory black carbon and implications for organic tracer methods. The addition of a new batch of fuel results in low temperature pyrolysis as the fuel heats up, resulting in strong, short-lived, variable emission peaks of organic aerosol-containing markers of anhydrous sugars, such as levoglucosan (fragment at m/z 60). Flaming combustion results in emissions dominated by refractory black carbon co-emitted with minor fractions of organic aerosol and markers of anhydrous sugars. Full cycle emissions are an external mixture of larger organic aerosol-dominated and smaller thinly coated refractory black carbon particles. A very high burn rate results in increased full cycle mass emission factors of 66, 2.7, 2.8 and 1.3 for particulate polycyclic aromatic hydrocarbons, refractory black carbon, total organic aerosol and m/z 60, respectively, compared to nominal burn rate. Polycyclic aromatic hydrocarbons are primarily associated with refractory black carbon-containing particles. We hypothesize that at very high burn rates, the central parts of the combustion zone become air starved, leading to a locally reduced combustion temperature that reduces the conversion rates from polycyclic aromatic hydrocarbons to refractory black carbon. This facilitates a strong increase of polycyclic aromatic hydrocarbons emissions. At nominal burn rates, full cycle emissions based on m/z 60 correlate well with organic aerosol, refractory black carbon and particulate matter. However, at higher burn rates, m/z 60 does not correlate with increased emissions of polycyclic aromatic hydrocarbons, refractory black carbon and organic aerosol in the flaming phase. The new knowledge can be used to advance source apportionment studies, reduce emissions of genotoxic compounds and model the climate impacts of refractory black carbon, such as absorption enhancement by lensing.

Physical and chemical properties of RME biodiesel exhaust particles without engine modifications

Nyström, R.; Sadiktsis, I.; Ahmed, T.M.; Westerholm, R.; Koegler, J.H.; Blomberg, A.; Sandström, T.; Boman, C.
2016 | Fuel | 186 (261-269)

A major contributor to ambient particulate air pollution is exhaust from diesel engines and other vehicles, which can be linked to different adverse health effects. During the last decades, a global drive towards finding sustainable and clean bio-based alternative fuels for the transport sector has taken place and biodiesel is one of the most established alternatives today. To better assess the overall effects on a public health level when introducing biodiesel and other renewable fuels, a better understanding of the detailed exhaust particle properties, is needed. In this work, the physical and chemical properties of biodiesel exhaust particles were studied in comparison to standard diesel exhaust emissions, in an existing engine without modifications, focusing on particulate carbonaceous matter and PAH/Oxy-PAH as well as fine particle size distribution. An older off-road engine, produced between 1996 and 2004, was used with three different fuels/fuel blends; (1) 100 wt% low-sulfur standard petro diesel (SD), (2) 100 wt% rapeseed methyl ester biodiesel (B100) and (3) a blended fuel – B30 consisting of 30 wt% RME and 70 wt% SD. The study focused mainly on emissions from transient engine operation, but includes also idling conditions. The gaseous emissions measured for the biodiesel fuel were in general in accordance with previous reported data in the literature, and compared to the standard petro diesel the emissions of CO was lower while NOx emissions increased. The particulate mass concentration during transient operation was almost halved compared to when petro diesel was used and this was associated with a decrease in average particle size. The shift in particle mass and size was associated with a higher fraction of organic matter in general, considerable less PAH’s but a relative higher fraction of Oxy-PAH’s, when shifting from petro diesel to biodiesel.

PAH exposure and relationship between buccal micronucleus cytome assay and urinary 1-hydroxypyrene levels among cashew nut roasting workers

S. Batistuzzo; M.O. Galvão; E.S. Duarte; J.J. Hoelzemann; J. Menezes Filho; I. Sadiktsis; R. Westerholm; K. Dreij
2016 | Toxicol. Lett. | 258, supplement (S223-S224)

52nd Congress of the European Societies of Toxicology (EUROTOX) | September 4, 2016 | Fibes Congress Center Seville, Spain

Traffic related air pollution with emphasis on particle associated polycyclic aromatic hydrocarbons: Tire wear and biodiesel exhaust emissions

2016 | ACES, SU | ISBN: 978-91-7649-374-8

Particulate matter (PM) is regarded as one of the more important components of air pollution causing adverse health effects. A large group of compounds associated with PM are polycyclic aromatic compounds (PACs) which comprises polycyclic aromatic hydrocarbons (PAHs). Several PACs are known for their mutagenic and carcinogenic properties as well as have the ability to induce oxidative stress.

With the growing importance of non-exhaust particles relative to vehicular tail-pipe emissions in urban air, it is necessary to investigate the possible contribution of PAHs from the different non-exhaust sources, as these inputs are far less characterized than tail-pipe emissions and their impact on human health is largely unknown.

In this thesis automobile tires, an important non-exhaust traffic related source to particles, have been investigated for its content of highly carcinogenic dibenzopyrene isomers. In a separate study benzothiazoles, a class of compounds used as vulcanization accelerators in tire manufacture, were determined to evaluate their use as potential markers for tire wear particles in ambient air.

Analysis of the tires showed a substantial variation in the PAH content between different makes of tires, likewise did the benzothiazoles content vary. By determining benzothiazole in air particles collected at a busy street in Stockholm the tire rubber contribution to airborne particles was estimated to 0.7 and 5.5 % for PM10 and all airborne particles, respectively. Together with the determined content of dibenzopyrenes and the relatively low mass contribution of tire wear to airborne particles in the urban air, estimated in this thesis as well as suggested by the literature, tire wear appears to be a minor traffic related contributor of these PAH compounds in the urban air. Nevertheless, tire wear may be an important source to 2-mercaptobenzothiazole in the urban air.

Biodiesel, a biofuel produced from plant and animal fats, has been suggested as a suitable replacement for conventional petroleum based diesel fuels. While the majority of studies have focused on health outcomes from petroleum diesel exhaust exposure, human health effects related to biodiesel exhaust exposure is much less investigated.

Biodiesel exhaust particles have been compared with conventional petroleum diesel by determining >40 PAHs in two separate studies on two different diesel engines, running on neat rapeseed methyl ester (RME), petroleum diesel and a fuel blend of 3:7 RME : petroleum diesel. One of the biodiesel studies also included determination of four oxygenated PAHs (Oxy-PAHs).

The exhaust from biodiesel combustion differed from petroleum diesel combustion with regards to particle size, number of emitted particles, relative amount of volatile material adsorbed on the particles and emission of particle-associated PAHs and Oxy-PAHs. A portion of these volatile compounds originated from unburned or partially combusted biodiesel fuel, which interfered with the analysis. A sample cleanup method was therefore developed for determination of PAH in lipid rich matrices. Biodiesel combustion produced lower emission of PAHs and Oxy-PAH with the exception of a few PAHs with higher molecular weights. In comparison with petroleum diesel, the biodiesel particles had a higher relative composition of PAHs with more than four rings.

Removal of polycyclic aromatic hydrocarbons and genotoxic compounds in urban air using air filter materials for mechanical ventilation in buildings

Sadiktsis, I.; Nilsson, G.; Johansson, U.; Rannug, U.; Westerholm, R.
2016 | Sci technol built env | 22 (3) (346-355)

Humans spend most of their lives in indoor environments; hence, indoor exposure to air pollution may constitute a large part of the total exposure to air pollution. Polycyclic aromatic hydrocarbons are well known for their mutagenicity and carcinogenicity and are ubiquitous in urban environments as a result of combustion from e.g. vehicular traffic. Polycyclic aromatic hydrocarbons associated to air particulate matter in indoor environments originates from several sources including: cooking and heating, outdoor sources, smoking, candle and incense burning. Infiltration has been suspected to be one major source of indoor polycyclic aromatic hydrocarbons. In this study, four different air filter materials intended for mechanical ventilation were tested for their capability to remove particle bound polycyclic aromatic hydrocarbons and other genotoxic compounds from a real urban aerosol. Particles were sampled at two highly trafficked locations in Stockholm using a sampling system capable of sample particles in parallel, thus allowing sampling of filtered and un-filtered air simultaneously. The sampled particles were extracted and analysed for polycyclic aromatic hydrocarbons and the genotoxicity of the organic extract was determined using Ames mutagenicity tests. Each air filters capability of removing polycyclic aromatic hydrocarbons and reducing genotoxic effects was determined by comparing the filtered and un-filtered air samples. The results showed that all air filter materials had the capability of removing polycyclic aromatic hydrocarbons and reduce genotoxic effects downstream the air filter, and that the magnitude of the reduction was correlated with the standardized particulate collection efficiencies of a 0.4 μm particles for the tested air filter materials. However, the filter with the lowest performance did not significantly reduce direct acting mutagens.

Effect of wood smoke exposure on vascular function and thrombus formation in healthy fire fighters

Amanda L Hunter; Jon Unosson; Jenny A Bosson; Jeremy P Langrish; Jamshid Pourazar; Jennifer B Raftis; Mark R Miller; Andrew J Lucking; Christoffer Boman; Robin Nyström; Kenneth Donaldson; Andrew D Flapan; Anoop SV Shah; Louis Pung; Ioannis Sadiktsis; Silvia Masala; Roger Westerholm; Thomas Sandström; Anders Blomberg; David E Newby; Nicholas L Mills
2014 | Part Fibre Toxicol | 11 (62)

Myocardial infarction is the leading cause of death in fire fighters and has been linked with exposure to air pollution and fire suppression duties. We therefore investigated the effects of wood smoke exposure on vascular vasomotor and fibrinolytic function, and thrombus formation in healthy fire fighters.

In a double-blind randomized cross-over study, 16 healthy male fire fighters were exposed to wood smoke (~1 mg/m3 particulate matter concentration) or filtered air for one hour during intermittent exercise. Arterial pressure and stiffness were measured before and immediately after exposure, and forearm blood flow was measured during intra-brachial infusion of endothelium-dependent and -independent vasodilators 4–6 hours after exposure. Thrombus formation was assessed using the ex vivo Badimon chamber at 2 hours, and platelet activation was measured using flow cytometry for up to 24 hours after the exposure.

Compared to filtered air, exposure to wood smoke increased blood carboxyhaemoglobin concentrations (1.3% versus 0.8%; P < 0.001), but had no effect on arterial pressure, augmentation index or pulse wave velocity (P > 0.05 for all). Whilst there was a dose-dependent increase in forearm blood flow with each vasodilator (P < 0.01 for all), there were no differences in blood flow responses to acetylcholine, sodium nitroprusside or verapamil between exposures (P > 0.05 for all). Following exposure to wood smoke, vasodilatation to bradykinin increased (P = 0.003), but there was no effect on bradykinin-induced tissue-plasminogen activator release, thrombus area or markers of platelet activation (P > 0.05 for all).

Wood smoke exposure does not impair vascular vasomotor or fibrinolytic function, or increase thrombus formation in fire fighters. Acute cardiovascular events following fire suppression may be precipitated by exposure to other air pollutants or through other mechanisms, such as strenuous physical exertion and dehydration.

Class separation of lipids and polycyclic aromatic hydrocarbons in normal phase High Performance Liquid Chromatography – A prospect for analysis of aromatics in edible vegetable oils and biodiesel exhaust particulates

Olsson, P; Sadiktsis, I.; Holmbäck, J.; Westerholm, R.
2014 | J. Chromatogr. A | 1360 (39-46)

The retention characteristics of the major lipid components in biodiesels and edible oils as well as representative polycyclic aromatic compounds (PAHs) have been investigated on five different normal phase HPLC stationary phases, in order to optimize class separation for an automatized online HPLC cleanup of PAHs prior GC-MS analysis. By stepwise comparison of different hexane/MTBE compositions as mobile phases on cyano-, phenyl-, pentabromobenzyl-, nitrophenyl- and amino- modified silica columns, the capacity and selectivity factors for each analyte and column could be calculated. It was concluded that the most suitable column for backflush isolation of PAHs in biodiesel and edible oil matrices was the pentabromobenzyl-modified silica (PBB). A previously described online HPLC-GC-MS system using the PBB column was then evaluated by qualitative and quantitative analysis of a biodiesel exhaust particulate extract and a vegetable oil reference material. The GC-MS full scan analysis of the biodiesel particulate extract showed that the lipids had been removed from the sample and a fraction containing PAHs and oxygenated derivatives thereof had been isolated. Quantified mass fractions of PAHs of the reference material BCR-458 agreed well for most of the certified PAH mass fractions in the spiked coconut oil reference material.

Tire tread wear particles in ambient air – a previously unknown source of human exposure to the biocide 2-mercaptobenzothiazole

2014 | Environ Sci Pollut Res Int | 21 (19) (11580-11586)

Urban particulate matter (PM), asphalt, and tire samples were investigated for their content of benzothiazole and benzothiazole derivates. The purpose of this study was to examine whether wear particles, i.e., tire tread wear or road surface wear, could contribute to atmospheric concentrations of benzothiazole derivatives. Airborne particulate matter (PM10) sampled at a busy street in Stockholm, Sweden, contained on average 17 pg/m3 benzothiazole and 64 pg/m3 2-mercaptobenzothiazole, and the total suspended particulate-associated benzothiazole and 2-mercaptobenzothiazole concentrations were 199 and 591 pg/m3, respectively. This indicates that tire tread wear may be a major source of these benzothiazoles to urban air PM in Stockholm. Furthermore, 2-mercaptobenzothiazole was determined in urban air particulates for the first time in this study, and its presence in inhalable PM10 implies that the human exposure to this biocide is underestimated. This calls for a revision of the risk assessments of 2-mercaptobenzothiazole exposure to humans which currently is limited to occupational exposure.

Particulate Associated Polycyclic Aromatic Hydrocarbon Exhaust Emissions From A Portable Power Generator Fueled With Three Different Fuels – A Comparison Between Petroleum Diesel And Two Biodiesels

Sadiktsis, I.; Koegler, J.H.; Benham, T.; Bergvall, C.; Westerholm, R.
2014 | Fuel | 115 (573-580)

The fuel impact on the emission of more than 40 particulate associated polycyclic aromatic hydrocarbons (PAHs) in the molecular weight range 178 - 302 Daltons were investigated. The fuels; neat diesel (EN 590), rape seed methyl ester (B100) and a 30 % w/w blend thereof (B30) were tested on a portable power generator without any exhaust aftertreatment. Gaseous emissions of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NOx) were measured along with particulate emissions and its size distribution for the different fuels. Collected diesel particles were extracted using pressurized fluid extraction and analyzed using an online hyphenated liquid chromatography - gas chromatography - mass spectrometry system.

The neat B100 and the B30 fuel produced less CO and total PAHs while the emissions of NOx and particulate matter increased compared to petroleum diesel fuel per kWh. The reduction of PAH emissions of the alternative diesel fuels were 36 % and 70 % for B30 and B100 respectively. While the PAH profiles for the neat diesel fuel and B30 were similar, the profile of B100 differed in the sense that the emission contained a higher percentage of PAHs with higher molecular weights. The emission of these PAHs was however larger using the neat diesel fuel with the exception for some of these higher molecular weight PAHs of which there was an increased emission using B100. Thermogravimetric analysis revealed that the collected particles from B100 contained a substantial amount of volatile components. A mass spectrometric full scan analysis suggests that these volatile components are in fact unburned or partially-burned fuel constituents.

It is concluded that the particles originating from biodiesel combustion might be very different from those originating from petroleum diesel combustion which places new demands on the development of measurement methodologies originally developed for particulate emissions from petroleum-based fuels.

Determination of benzothiazole and benzotriazole derivates in tire and textile samples by high performance liquid chromatography – electrospray ionization tandem mass spectrometry

Rozanna Avagyan; Ioannis Sadiktsis; Gunnar Thorsén; Conny Östman; Roger Westerholm
2013 | J. Chromatogr. A | 1307 (119-125)

A high performance liquid chromatography - tandem mass spectrometry method utilizing electrospray ionization in positive and negative mode has been developed for the separation and detection of benzothiazole and benzotriazole derivates. Ultra-sonication assisted solvent extraction of these compounds has also been developed and the overall method demonstrated on a selected clothing textile and an automobile tire sample. Matrix effects and extraction recoveries, as well as linearity and limits of detection have been evaluated. The calibration curves spanned over more than two orders of magnitude with coefficients of correlation R2 > 0.99 and the limits of detection and the limits of quantification were in the range 1.7 - 58 pg injected and 18 - 140 pg/g, respectively. The extraction recoveries ranged between 69 to 102 % and the matrix effects between 75 to 101 %. Benzothiazole and benzotriazole derivates were determined in the textile sample and benzothiazole derivatives determined in the tire sample with good analytical performance.

Automobile tires – a potential source of highly carcinogenic dibenzopyrenes to the environment.

2012 | Environ. Sci. Technol. | 46 (6) (3326-3334)

Eight tires were analyzed for 15 high molecular weight (HMW) polycyclic aromatic hydrocarbons (PAH), using pressurized fluid extraction. The variability of the PAH concentrations determined between different tires was large; a factor of 22.6 between the lowest and the highest. The relative abundance of the analytes was quite similar regardless of tire. Almost all (92.3%) of the total extractable PAH content was attributed to five PAHs: benzo[ghi]perylene, coronene, indeno[1,2,3-cd]pyrene, benzo[e]pyrene, and benzo[a]pyrene. The difference in the measured PAH content between summer and winter tires varied substantially across manufacturers, making estimates of total vehicle fleet emissions very uncertain. However, when comparing different types of tires from the same manufacturer they had significantly (p = 0.05) different PAH content. Previously, there have been no data available for carcinogenic dibenzopyrene isomers in automobile tires. In this study, the four dibenzopyrene isomers dibenzo[a,l]pyrene, dibenzo[a,e]pyrene, dibenzo[a,i]pyrene, and dibenzo[a,h]pyrene constituted <2% of the sum of the 15 analyzed HMW PAHs. These findings show that automobile tires may be a potential previously unknown source of carcinogenic dibenzopyrenes to the environment.

  • Page 1 of 2
  • 1
  • 2

Contact information

Visiting addresses:

Geovetenskapens Hus,
Svante Arrhenius väg 8, Stockholm

Arrheniuslaboratoriet, Svante Arrhenius väg 16, Stockholm (Unit for Analytical and Toxicological Chemistry)

Mailing address:
Department of Environmental Science and Analytical Chemistry (ACES)
Stockholm University
106 91 Stockholm

Press enquiries should be directed to:

Stella Papadopoulou
Science Communicator
Phone +46 (0)8 674 70 11