Unmasking the effects of aerosols on greenhouse warming over Europe

P. Glantz; O. G. Fawole; J. Ström; M. Wild; K. J. Noone
2022 | J. Geophys. Res.-Atmos. | 127

Aerosol optical thickness (AOT) has decreased substantially in Europe in the summer half year (April–September) since 1980, with almost a 50% reduction in Central and Eastern Europe, according to Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis. At the same time, strong positive trends in ERA5 reanalysis surface solar radiation downward for all-sky and clear-sky conditions (SSRD and SSRDc, respectively) and temperature at 2 m are found for Europe in summer during the period 1979–2020. The GEBA observations show as well strong increases in SSRD during the latest four decades. Estimations of changes in SSRDc, using the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model, show similarly strong increases when fed by MERRA-2 AOT. The estimates of warming in this study, caused by increases in SSRD and SSRDc, are based on energy budget approximations and the Stefan Boltzmann law. The increases in near surface temperature, estimated both for clear-sky and all-sky conditions, are up to about 1°C for Central and Eastern Europe. The total warming over large parts of this region for clear-sky conditions is however nearly double the global mean temperature increase of 1.1°C, while somewhat less for all-sky conditions. The effects of aerosols on warming over the southerly Iberian Peninsula are weaker compared to countries further north. The rapid total warming over the Iberian Peninsula is probably caused by greenhouse warming, drier surface conditions, and to some degree decline in aerosols. Reduced cloud cover is found for large parts of Europe in summer during the latest four decades.

Validation of MODIS C6.1 and MERRA-2 AOD Using AERONET Observations: A Comparative Study over Turkey

Aldabash, M.; Belcik, F. B.; Glantz, P.
2020 | Elsevier Science Publishers | 11 (Atmsophere) (1-17)

A Random Forest Approach to Estimate Daily Particulate Matter, Nitrogen Dioxide, and Ozone at Fine Spatial Resolution in Sweden

Stafoggia, M.; Johansson, C.; Glantz, P.; Renzi, M.; Shtein, A.; de Hoogh, K.; Kloog, I.; Davoli, M.; Michelozzi, P.; Bellander, T.
2020 | ATMOSPHERE | 11 (239) (1-19)

Air pollution is one of the leading causes of mortality worldwide. An accurate assessment
of its spatial and temporal distribution is mandatory to conduct epidemiological studies able to
estimate long-term (e.g., annual) and short-term (e.g., daily) health effects. While spatiotemporal
models for particulate matter (PM) have been developed in several countries, estimates of daily
nitrogen dioxide (NO2) and ozone (O3) concentrations at high spatial resolution are lacking, and no
such models have been developed in Sweden. We collected data on daily air pollutant
concentrations from routine monitoring networks over the period 2005–2016 and matched them
with satellite data, dispersion models, meteorological parameters, and land-use variables. We
developed a machine-learning approach, the random forest (RF), to estimate daily concentrations
of PM10 (PM<10 microns), PM2.5 (PM<2.5 microns), PM2.5–10 (PM between 2.5 and 10 microns), NO2,
and O3 for each squared kilometer of Sweden over the period 2005–2016. Our models were able to
describe between 64% (PM10) and 78% (O3) of air pollutant variability in held-out observations, and
between 37% (NO2) and 61% (O3) in held-out monitors, with no major differences across years and
seasons and better performance in larger cities such as Stockholm. These estimates will allow to
investigate air pollution effects across the whole of Sweden, including suburban and rural areas,
previously neglected by epidemiological investigations.

Surface ozone climatology of South Eastern Brazil and the impact of biomass burning events

Targino, A. C.; Harrison, R. M.; Krecl, P.; Glantz, P.; de Lima, C. H.; Beddow, D.
2019 | Elsevier Science Publishers | 252 (Journal of Environmental Management)

In the austral spring, biomass fires affect a vast area of South America each year. We combined in situ ozone (O3) data, measured in the states of S~ao Paulo and Paran�a, Brazil, in the period 2014–2017, with aerosol optical depth, co-pollutants (NOx, PM2.5 and PM10) and air backtrajectories to identify sources, transport and geographical patterns in the air pollution data. We applied cluster analysis to hourly O3 data and split the investigation area of approximately 290,000 km2 into five groups with similar features in terms of diurnal, weekly, monthly and seasonal O3 concentrations. All groups presented a peak in September and October, associated with the fire activities and enhanced photochemistry. The highest mean O3 concentrations were measured inland whilst, besides having lower concentrations, the coastal group was also associated with the smallest diurnal and seasonal variations. The latter was attributed to lower photochemical activity due to frequently occurring overcast weather situation. The mean annual regional contribution of O3 over the area was 61 μg/m3, with large seasonal and intersite variabilities (from 35 to 84 μg/m3). The long-range transport of
smoke contributed with between 23 and 41% of the total O3 during the pollution events. A pollution outbreak in September 2015 caused many-fold increases in O3, PM2.5 and PM10 across the investigation area, which exceeded the World Health Organisation recommendations. We show that the regional transport of particulates and gas due to biomass burning overlays the local emissions in already highly polluted cities. Such an effect can outweigh local measures to curb anthropogenic air pollution in cities.

Trends in MODIS and AERONET derived aerosol optical thickness over Northern Europe.

Glantz, P.; Freud, E.; Johansson, C.; Noone, K. J.; Tesche, M.
2019 | Tellus B Chem Phys Meteorol | 71 (1) (1-21)

Long-term Aqua and Terra MODIS (MODerate resolution Imaging Spectroradiometer) Collections 5.1 and 6.1 (c051 and c061, respectively) aerosol data have been combined with AERONET (AERosol RObotic NETwork) ground-based sun photometer observations to examine trends in aerosol optical thickness (AOT, at 550 nm) over Northern Europe for the months April to September. For the 1927 and 1559 daily coincident measurements that were obtained for c051 and c061, respectively, MODIS AOT varied by 86 and 90%, respectively, within the predicted uncertainty of one standard deviation of the retrieval over land (ΔAOT = ±0.05 ± 0.15·AOT). For the coastal AERONET site Gustav Dalen Tower (GDT), Sweden, larger deviations were found for MODIS c051 and c061 (79% and 75%, respectively, within predicted uncertainty). The Baltic Sea provides substantially better statistical representation of AOT than the surrounding land areas and therefore favours the investigations of trends in AOT over the region. Negative trends of 1.5% and 1.2% per year in AOT, based on daily averaging, were found for the southwestern Baltic Sea from MODIS c051 and c061, respectively. This is in line with a decrease of 1.2% per year in AOT at the AERONET station Hamburg. For the western Gotland Basin area, Sweden, negative trends of 1.5%, 1.1% and 1.6% per year in AOT have been found for MODIS c051, MODIS c061 and AERONET GDT, respectively. The strongest trend of –1.8% per year in AOT was found for AERONET Belsk, Poland, which can be compared to –1.5% per day obtained from MODIS c051 over central Poland. The trends in MODIS and AERONET AOT are nearly all statistically significant at the 95% confidence level. The strongest aerosol sources are suggested to be located southwest, south and southeast of the investigation area, although the highest prevalence of pollution events is associated with air mass transport from southwest.

Trends in MODIS and AERONET derived aerosol optical thickness over Northern Europe

Glantz, P; Freud, E; Johansson, C; Noone, KJ; Tesche, M
2019 | Tellus Ser. B-Chem. Phys. Meteorol. | 71
aerosol optical thickness , air pollution , algorithms , anthropogenic aerosol , atmospheric transport , depth , emissions , instrument , land , network , products , satellite-observations , seawifs , terra
Long-term Aqua and Terra MODIS (MODerate resolution Imaging Spectroradiometer) Collections 5.1 and 6.1 (c051 and c061, respectively) aerosol data have been combined with AERONET (AERosol RObotic NETwork) ground-based sun photometer observations to examine trends in aerosol optical thickness (AOT, at 550nm) over Northern Europe for the months April to September. For the 1927 and 1559 daily coincident measurements that were obtained for c051 and c061, respectively, MODIS AOT varied by 86 and 90%, respectively, within the predicted uncertainty of one standard deviation of the retrieval over land (AOT = +/- 0.05 +/- 0.15AOT). For the coastal AERONET site Gustav Dalen Tower (GDT), Sweden, larger deviations were found for MODIS c051 and c061 (79% and 75%, respectively, within predicted uncertainty). The Baltic Sea provides substantially better statistical representation of AOT than the surrounding land areas and therefore favours the investigations of trends in AOT over the region. Negative trends of 1.5% and 1.2% per year in AOT, based on daily averaging, were found for the southwestern Baltic Sea from MODIS c051 and c061, respectively. This is in line with a decrease of 1.2% per year in AOT at the AERONET station Hamburg. For the western Gotland Basin area, Sweden, negative trends of 1.5%, 1.1% and 1.6% per year in AOT have been found for MODIS c051, MODIS c061 and AERONET GDT, respectively. The strongest trend of -1.8% per year in AOT was found for AERONET Belsk, Poland, which can be compared to -1.5% per day obtained from MODIS c051 over central Poland. The trends in MODIS and AERONET AOT are nearly all statistically significant at the 95% confidence level. The strongest aerosol sources are suggested to be located southwest, south and southeast of the investigation area, although the highest prevalence of pollution events is associated with air mass transport from southwest.

Spaceborne observations of low surface aerosol concentrations in the Stockholm region

2016 | TELLUS B | 68 (28951)

Aviation effects on already-existing cirrus clouds

M. Tesche; P. Achtert; P. Glantz; K. J. Noone
2016 | Nat. Commun. | 7 (12016)

Determining the effects of the formation of contrails within natural cirrus clouds has proven to be challenging. Quantifying any such effects is necessary if we are to properly account for the influence of aviation on climate. Here we quantify the effect of aircraft on the optical thickness of already-existing cirrus clouds by matching actual aircraft flight tracks to satellite lidar measurements. We show that there is a systematic, statistically significant increase in normalized cirrus cloud optical thickness inside mid-latitude flight tracks compared with adjacent areas immediately outside the tracks.

Reconciling aerosol light extinction measurements from spaceborne lidar observations and in situ measurements in the Arctic

Tesche, M.; Zieger, P.; Rastak, N.; Charlson, R. J.; Glantz, P.; Tunved, P.; Hansson, H.-C
2014 | Atmos. Chem. Phys. | 14 (7869-7882)

In this study we investigate to what degree it is possible to reconcile continuously recorded particle light extinction coefficients derived from dry in situ measurements at Zeppelin station (78.92° N, 11.85° E; 475 m above sea level), Ny-Ålesund, Svalbard, that are recalculated to ambient relative humidity, as well as simultaneous ambient observations with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. To our knowledge, this represents the first study that compares spaceborne lidar measurements to optical aerosol properties from short-term in situ observations (averaged over 5 h) on a case-by-case basis. Finding suitable comparison cases requires an elaborate screening and matching of the CALIOP data with respect to the location of Zeppelin station as well as the selection of temporal and spatial averaging intervals for both the ground-based and spaceborne observations. Reliable reconciliation of these data cannot be achieved with the closest-approach method, which is often used in matching CALIOP observations to those taken at ground sites. This is due to the transport pathways of the air parcels that were sampled. The use of trajectories allowed us to establish a connection between spaceborne and ground-based observations for 57 individual overpasses out of a total of 2018 that occurred in our region of interest around Svalbard (0 to 25° E, 75 to 82° N) in the considered year of 2008. Matches could only be established during winter and spring, since the low aerosol load during summer in connection with the strong solar background and the high occurrence rate of clouds strongly influences the performance and reliability of CALIOP observations. Extinction coefficients in the range of 2 to 130 Mm−1 at 532 nm were found for successful matches with a difference of a factor of 1.47 (median value for a range from 0.26 to 11.2) between the findings of in situ and spaceborne observations (the latter being generally larger than the former). The remaining difference is likely to be due to the natural variability in aerosol concentration and ambient relative humidity, an insufficient representation of aerosol particle growth, or a misclassification of aerosol type (i.e., choice of lidar ratio) in the CALIPSO retrieval.

Aerosol indirect effects on continental low-level clouds over Sweden and Finland

Sporre, M. K.; Swietlicki, E.; Glantz, P; Kulmala, M.
2014 | Atmos. Chem. Phys. | 14 (12167-12179)

Remote sensing of aerosols in the Arctic for an evaluation of global climate model simulations

Glantz, P.; Bourassa, A.; Herber, A.; Iversen, T.; Karlsson, J.; Kirkevåg, A.; Maturilli; M.; Seland, O; Stebel, K.; Struthers, H.; Tesche, M.; Thomason, L.
2014 | J. Geophys. Res.-Atmos.

In this study Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua retrievals of aerosol
optical thickness (AOT) at 555 nm are compared to Sun photometer measurements from Svalbard for a
period of 9 years. For the 642 daily coincident measurements that were obtained, MODIS AOT generally
varies within the predicted uncertainty of the retrieval over ocean (ΔAOT = ±0.03 ± 0.05 · AOT). The results
from the remote sensing have been used to examine the accuracy in estimates of aerosol optical properties
in the Arctic, generated by global climate models and from in situ measurements at the Zeppelin station,
Svalbard. AOT simulated with the Norwegian Earth System Model/Community Atmosphere Model version 4 Oslo
global climate model does not reproduce the observed seasonal variability of the Arctic aerosol. The model
overestimates clear-sky AOT by nearly a factor of 2 for the background summer season, while tending to
underestimate the values in the spring season. Furthermore, large differences in all-sky AOT of up to 1 order of
magnitude are found for the CoupledModel Intercomparison Project phase 5 model ensemble for the spring and
summer seasons. Large differences between satellite/ground-based remote sensing of AOT and AOT estimated
from dry and humidified scattering coefficients are found for the subarctic marine boundary layer in summer.

A long-term satellite study of aerosol effects on convective clouds in Nordic background air

Sporre, M.; Swietlicki, E.; Glantz, P.; and Kulmala, M.
2014 | Atmos. Chem. Phys. | 14 (2203-2217)

Contact information

Visiting addresses:

Geovetenskapens Hus,
Svante Arrhenius väg 8, Stockholm

Arrheniuslaboratoriet, Svante Arrhenius väg 16, Stockholm (Unit for Toxicological Chemistry)

Mailing address:
Department of Environmental Science
Stockholm University
106 91 Stockholm

Press enquiries should be directed to:

Stella Papadopoulou
Science Communicator
Phone +46 (0)8 674 70 11
stella.papadopoulou@aces.su.se