Increased volatility in cloud residuals compared to ambient aerosols

E.L. Graham¹, P. Zieger¹, C. Mohr¹, U. Wideqvist¹, R. Krejci¹, J. Ström¹, and I. Riipinen¹
emelie.graham@aces.su.se

¹Department of Environmental Science and Analytical Chemistry (ACES) and Bolin Centre for Climate Research, Stockholm University, 11418 Stockholm, Sweden

We see
INCREASING VOLATILITY DURING STRATIFORM CLOUD EVENT
• Decreased volatility with increased particle diameter
• Increased volatility for larger cloud residuals
• General lower hygroscopicity for smaller particles
 1.2 < GF < 1.5
 0.08 < κappa < 0.26

Chemical composition

Volatility vs Hygroscopicity

CAEsAR Campaign, summer 2014
Aerosol physical and chemical properties was measured at Mt Åreskutan, Central Sweden.
A Volatility and Hygroscopicity Tandem Differential Mobility Analyser (V/H-TDMA) was connected to a Counterflow Virtual Impactor (CVI) inlet, separating ambient aerosols and cloud droplet residuals.

Department of Environmental Science and Analytical Chemistry | ACES
Bolin Centre for Climate Research
A collaboration between Stockholm University, KTH and the SMHI