

Molecular and isotopic characterization of DOM on the Siberian Shelf, Arctic Ocean.

Barbara Deutsch^{*1}, Thorsten Dittmar², Marcus Sundbom³, Igor Semiletov⁴, Christoph Humborg^{1,3}

*barbara.deutsch@su.se, ¹Baltic Sea Centre, Stockholm University, Sweden; ² ICBM Oldenburg/MPI Bremen, Germany; ³Department of Environmental Science and Analytical Chemistry, Stockholm University, Sweden, ⁴University of Alaska, Fairbanks, USA.

Background

SWFRUS-C3

A comparison between a calculated mixing curve and the measured values indicates, that mixing is mainly determining the DOM distribution (Fig. 2C).

Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to gain more information about the molecular DOM composition. DOM sources and calculation of terrestrial DOC degraded marin DOCtor vs Salinity LS DOM DOC_{ter} vs Salinity ESS 300

The PCA results of the FT-ICR MS data showed, that it is possible to distinguish degraded from un-degraded marine DOM, as well as terrestrial from marine DOM, by plotting I_{DEG} versus δ^{13} C SPE-DOC (Fig. 4A). The calculated terrestrial end-member δ^{13} C value of -27.1‰ from our data agrees with the δ^{13} C values of DOC measured in the the Lena River (load weighted average: -27.1‰, [3])

Based on calculations with a linear mixing model it was possible to calculate the concentrations of terrestrial DOC (DOC...) for both areas and plot them versus salinity (Fig. 4B).

Conclusions

- Mixing is the dominant process that determines the DOM distribution on the Siberian shelf (Fig. 2C).
- Terrestrial DOM can be distinguished from marine DOM by means of the δ^{13} C SPE-DOC values, degraded from un-degraded marine DOM by means of the degradation index (I_{DEG})(Fig. 4A)

Our results suggest, that terrestrial DOC behaves rather conservative on the Siberian Shelf (Fig. 4B)

Results from the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS)

The number of identified compounds ranged from 3807 to 5053, and the DOM composition is dominated by highly unsaturated compounds (rel. contribution 73 -90%). The compounds that highly correlate to $\delta^{13}\text{C-SPE-DOC}$ (Spearman correlation) are shown in a Van Krevelen plot (Fig. 6). Clearly visible is the shift from compounds dominating marine DOM (H/C <1) to terrestrial DOM compounds (H/C >1) with increasing $\delta^{13}C$ values. A degradation Index (I_{DEG}) was calculated from 10 formulas, that can be used to describe the degradation state of DOM [4].

(PCA) was performed with all molecular data. It showed that 84% of the variance in the molecular composition can be explained by two PCs (PC1: 60%, PC2: 24%). A correlation of the PCscores with the environmental data showed that PC1 is highly correlated to ${\rm I}_{\rm DEG}-$ describing the degradation state of the material, whereas PC2 shows a good correlation to all parameters that distinguish between marine and terrestrial sources, like δ13C-SPE-DOC, salinity, and δ^2 H-H₂O (Fig. 7).

A Principal Component Analysis

In the inner parts of the Laptev Sea, the influence of the Lena river is clearly visible in the surface salinities (Fig. 3A), high DOC concentrations (Fig. 3B) and low $\delta^{13}\text{C}$ SPE-DOC (< -27‰, Fig. 3C)). At the outer parts marine conditions dominate (salinity >30, DOC ≈ 50 µmol L-1, δ13C SPE-DOC > -23‰)

The East Siberian Sea shows generally lower DOC concentrations (around 50 $\mu mol~L^{\text{-1}}$) and higher δ^{13} C values (< -25‰) which indicates a higher contribution of marine DOM and not a high influence of the Kolyma River.

Methods

- of surface samples (8m depth) was done from the vessels' seawater-other samples were taken from Niskin-bottles attached to a Seabird 11 plus CTD system
- ed following the procedure described in [2] with Bond Elut-PPI
- IBMS after combustion in a CarloErba NC2500
- characterization of the samples was done via FT-ICR-MS (Bruke

Acknowledgements

d like to thank the crew of I/B ODEN, Ina Ulber (University of Idenburg) for assistance during the sample preparation for the FT-ICR-MS neasurements, and Katrin Klaproth (University of Oldenburg) for measuring the amples at the FT-ICR-MS. A big thanks as well to Heike Siegmund (Stockholm rsity) for analyses of the stable isotope samples, and to Marc Geibel holm University) for his support during the data evaluation.

Cited Literature

d Organic Matte