

Kerstin Winkens¹, Jani Koponen², Robin Vestergren¹, Urs Berger^{1,3}, Ian T. Cousins¹

¹Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Sweden; Contact: Kerstin.Winkens@aces.su.se ²Chemicals and Health Unit, National Institute for Health and Welfare (THL), Kuopio, Finland; ³Department Analytical Chemistry, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany;

Background

Exposure to chemicals during sensitive childhood development stages has been linked to several diseases. However, knowledge about early life exposure to many "Childhood Exposure to chemicals is limited. Environmental Pollutants (CEEP)" is a joint research project between the National Institute for Health and Welfare (THL) in Finland and the Department of Environmental Science and Analytical Chemistry (ACES, Stockholm University) with focus on childhood exposure to perfluoroalkyl acids (PFAAs) and their precursors. A quantitative understanding of multiple exposure pathways will help future decision making and highlight possible exposure reduction potential.

Sampling

• Study participants: 55 Finnish children from the Kuopio area followed over the course of 10 years

(subgroup of a larger study, called LUKAS2)

- Sampling years: 2005/6, 2010/11, 2014/2015 (children's age: 1, 6, 10 years)
- Indoor sampling of each household:

a. Passive air samples over 3 weeks

(SIPs = XAD-4 sorbent impregnated polyurethane foam disk)

- b. dust samples (vacuum cleaned floor)
- Drinking water samples from all water suppliers
- Individual-based food frequency questionnaires (FFQs)
- Urine and blood samples taken with hospital cooperation

Acknowledgement formas

We thank all researchers involved in sampling, the study participants and their parents as well s the Swedish Research Council FORMAS for

The CEEP project – understanding children's exposure to per- and polyfluoroalkyl substances

vears

Methods

- 2012)

Planned outcomes

- Children's urinary clearance rates of PFAAs
- The longitudinal PFAS trend in children's serum will be a novel data set to understand body loads during childhood and identification of possible peak exposure
- Multiple exposure media measurements will be valuable input data for models and allow quantification of the relative importance of the different exposure pathways of PFASs to children
- Quantifying and understanding the exposure will support:
- ultimately leading to reduced exposure of children to PFAAs

Literature

- relative importance of direct and indirect dietary exposure. ENVIRON POLLUT 198(0): 108-115.
- population in 1999, 2005 and 2010. ENVIRON INT 49: 120-127.

Stockholm University

• Samples (air, drinking water, dust, urine, blood) and FFQs will be treated individual-based

 \rightarrow NO pooling

 All samples will be extracted and the extracts cleaned up and analyzed: FTOHs and FOSA/Es by GC-MS, PFAAs (PFCAs and PFSAs) by LC-MS

• FFQ data will be combined with previously measured concentrations of target compounds in food items from Sweden to quantify dietary intake (Gebbink et al. 2015, Vestergren et al.

• Exposure model will describe the relationship between external and internal exposure

a) interpretation of epidemiological studies b) risk assessment and management strategies.

• Gebbink WA, Glynn A, Darnerud PO, Berger U. 2015. Perfluoroalkyl acids and their precursors in Swedish food: The • Vestergren R, Berger U, Glynn A, Cousins IT. 2012. Dietary exposure to perfluoroalkyl acids for the Swedish

• Picture happy children: http://www.majema.se/wordpress/wp-content/uploads/2010/10/glada_barn_ff_web.jpg